• Burrough, P. A., 1981: Fractal dimensions of landscapes and other environmental data. Nature, 294, 240242, doi:10.1038/294240a0.

  • Burrough, P. A., 1993: Fractals and geostatistical methods in landscape studies. Fractals in Geography, N. S.-N. Lam and L. De Cola, Eds., Prentice Hall, 87–121.

  • Byun, D. W., 1990: On the analytical solution of flux-profile relationships for the atmospheric surface layer. J. Appl. Meteor., 29, 652–657, doi:10.1175/1520-0450(1990)029<0652:OTASOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., 1990: Parametrization for the absorption of solar radiation by O2 and CO2 with application to climate studies. J. Climate, 3, 209217, doi:10.1175/1520-0442(1990)003<0209:PFTAOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., 1992: A solar radiation model for climate studies. J. Atmos. Sci., 49, 762772, doi:10.1175/1520-0469(1992)049<0762:ASRMFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., , and Suarez M. J. , 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp.

  • Chow, F. K., , Weigel A. P. , , Street R. L. , , Rotach M. W. , , and Xue M. , 2006: High resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments. J. Appl. Meteor. Climatol., 45, 6386, doi:10.1175/JAM2322.1.

    • Search Google Scholar
    • Export Citation
  • Dadic, R., , Mott R. , , Lehning M. , , Carenzo M. , , Anderson B. , , and Mackintosh A. , 2013: Sensitivity of turbulent fluxes to wind speed over snow surfaces in different climatic settings. Adv. Water Resour., 55, 178189, doi:10.1016/j.advwatres.2012.06.010.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91115, doi:10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deems, J., , Fassnacht S. , , and Elder K. , 2006: Fractal distribution of snow depth from LiDAR data. J. Hydrometeor., 7, 285297, doi:10.1175/JHM487.1.

    • Search Google Scholar
    • Export Citation
  • Defant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Archiv Meteor., Geophys. Bioklimatol., Ser. A, 1, 421450, doi:10.1007/BF02247634.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., 2002: Structure and morphology of the convective boundary layer on mountainous terrain. Ph.D. dissertation, University of British Columbia, 191 pp.

  • Doorschot, J., , Lehning M. , , and Vrouwe A. , 2004: Field measurements of snow drift threshold and mass fluxes, and related model simulations. Bound.-Layer Meteor., 113, 347368, doi:10.1007/s10546-004-8659-z.

    • Search Google Scholar
    • Export Citation
  • Egli, L., , Jonas T. , , Grünewald T. , , Schirmer M. , , and Burlando P. , 2011: Dynamics of snow ablation in a small Alpine catchment observed by repeated terrestrial laser scans. Hydrol. Process.,26, 1574–1585, doi:10.1002/hyp.8244.

  • Ellis, A. W., , and Leather D. J. , 1998: The effects of a discontinuous snow cover on lower atmospheric temperature and energy flux patterns. Geophys. Res. Lett., 25, 21612164, doi:10.1029/98GL01582.

    • Search Google Scholar
    • Export Citation
  • Emerson, C. W., , Lam N. S.-N. , , and Quattrochi D. A. , 1999: Multiscale fractal analysis of image texture and pattern. Photogramm. Eng. Remote Sens.,65, 51–61.

  • Essery, R., , Granger R. , , and Pomeroy J. W. , 2006: Boundary-layer growth and advection of heat over snow and soil patches: Modelling and parameterization. Hydrol. Processes, 20, 953967, doi:10.1002/hyp.6122.

    • Search Google Scholar
    • Export Citation
  • Goodchild, M. F., , and Mark D. M. , 1987: The fractal nature of geographic phenomena. Ann. Assoc. Amer. Geogr., 77, 265278, doi:10.1111/j.1467-8306.1987.tb00158.x.

    • Search Google Scholar
    • Export Citation
  • Granger, R. J., , Pomeroy J. W. , , and Parvianen J. , 2002: Boundary layer integration approach to advection of sensible heat to a patchy snowcover. Hydrol. Processes, 16, 35593569, doi:10.1002/hyp.1227.

    • Search Google Scholar
    • Export Citation
  • Groot Zwaaftink, C. D., , Löwe H. , , Mott R. , , Bavay M. , , and Lehning M. , 2011: Drifting snow sublimation: A high resolution 3D model with temperature and moisture feedbacks. J. Geophys. Res., 116, D16107, doi:10.1029/2011JD015754.

    • Search Google Scholar
    • Export Citation
  • Grünewald, T., , and Lehning M. , 2011: Altitudinal dependency of snow amounts in two small alpine catchments: Can catchment-wide snow amounts be estimated via single snow or precipitation stations? Ann. Glaciol., 52, 153158, doi:10.3189/172756411797252248.

    • Search Google Scholar
    • Export Citation
  • Grünewald, T., , Schirmer M. , , Mott R. , , and Lehning M. , 2010: Spatial and temporal variability of snow depth and SWE in a small mountain catchment. Cryosphere, 4, 111, doi:10.5194/tcd-4-1-2010.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., 2003: On the pressure field in the slope wind layer. J. Atmos. Sci., 60, 16321635, doi:10.1175/1520-0469(2003)60<1632:OTPFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klinkenberg, B., , and Goodchild M. F. , 1992: The fractal properties of topography: A comparison of methods. Earth Surf. Processes Landforms, 17, 217234, doi:10.1002/esp.3290170303.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 1995: Local advection of momentum, heat and moisture during the melt of patchy snow covers. J. Appl. Meteor., 34, 17051715, doi:10.1175/1520-0450-34.7.1705.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., , Haehnel R. B. , , Sturm M. , , Hiemstra C. A. , , Berezovskaja S. , , and Tabler R. D. , 2007: Instruments and methods simulating complex snow distributions in windy environments using SnowTran-3D. J. Glaciol., 53, 241256, doi:10.3189/172756507782202865.

    • Search Google Scholar
    • Export Citation
  • Luce, C. H., , Tarboton D. G. , , and Cooley K. R. , 1998: The influence of the spatial distribution of snow on basin-averaged snowmelt. Hydrol. Processes, 12, 16711683, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1671::AID-HYP688>3.0.CO;2-N.

    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., , Chow F. K. , , and Lundquist J. K. , 2012: An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF Model. Mon. Wea. Rev., 140, 3936–3955, doi:10.1175/MWR-D-11-00311.1.

    • Search Google Scholar
    • Export Citation
  • Marsh, P., , and Pomeroy J. W. , 1996: Meltwater fluxes at an arctic forest-tundra site. Hydrol. Processes, 10, 13831400, doi:10.1002/(SICI)1099-1085(199610)10:10<1383::AID-HYP468>3.0.CO;2-W.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., , and Obukhov A. M. , 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Mott, R., , Schirmer M. , , Bavay M. , , Grünewald T. , , and Lehning M. , 2010: Understanding snow-transport processes shaping the mountain snow-cover. Cryosphere, 4, 545559, doi:10.5194/tc-4-545-2010.

    • Search Google Scholar
    • Export Citation
  • Mott, R., , Egli L. , , Grünewald T. , , Dawes N. , , Manes C. , , Bavay M. , , and Lehning M. , 2011a: Micrometeorological processes driving snow ablation in an Alpine catchment. Cryosphere, 5, 10831098, doi:10.5194/tc-5-1083-2011.

    • Search Google Scholar
    • Export Citation
  • Mott, R., , Schirmer M. , , and Lehning M. , 2011b: Scaling properties of wind and snow depth distribution in an Alpine catchment. J. Geophys. Res., 116, D06106, doi:10.1029/2010JD014886.

    • Search Google Scholar
    • Export Citation
  • Mott, R., , Gromke C. , , Grünewald T. , , and Lehning M. , 2013: Relative importance of advective heat transport and boundary layer decoupling in the melt dynamics of a patchy snow cover. Adv. Water Resour., 55, 8897, doi:10.1016/j.advwatres.2012.03.001.

    • Search Google Scholar
    • Export Citation
  • Mott, R., , Scipión D. E. , , Schneebeli M. , , Dawes N. , , Berne A. , , and Lehning M. , 2014: Orographic effects on snow deposition patterns in mountainous terrain. J. Geophys. Res. Atmos., 119, 14191439, doi:10.1002/2013JD019880.

    • Search Google Scholar
    • Export Citation
  • Nadeau, D. F., , Pardyjak E. R. , , Higgins C. W. , , Huwald H. , , and Parlange M. B. , 2013: Flow during the evening transition over steep Alpine slopes. Quart. J. Roy. Meteor. Soc., 139, 607–624, doi:10.1002/qj.1985.

    • Search Google Scholar
    • Export Citation
  • Neumann, N., , and Marsh P. , 1998: Local advection of sensible heat in the snowmelt landscape of Arctic tundra. Hydrol. Processes, 12, 15471560, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1547::AID-HYP680>3.0.CO;2-Z.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and Planton S. , 1989: A simple parametrization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pentland, A. P., 1984: Fractal-based description of natural scenes. IEEE Pattern Anal. Mach. Intell., 6, 661674, doi:10.1109/TPAMI.1984.4767591.

    • Search Google Scholar
    • Export Citation
  • Pohl, S., , and Marsh P. , 2006: Modelling the spatial–temporal variability of spring snowmelt in an arctic catchment. Hydrol. Processes, 20, 17731792, doi:10.1002/hyp.5955.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1952: Essentials of Fluid Dynamics. Hafner Publications, 452 pp.

  • Raderschall, N., , Lehning M. , , and Schär M. , 2008: Fine-scale modeling of the boundary layer wind field over steep topography. Water Resour. Res., 44, W09425, doi:10.1029/2007WR006544.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., , and Zardi D. , 2007: On the boundary layer structure over highly complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937–948, doi:10.1002/qj.71.

    • Search Google Scholar
    • Export Citation
  • Schirmer, M., , and Lehning M. , 2011: Persistence in intra-annual snow depth distribution: 2. Fractal analyses of snow depth development. Water Resour. Res., 47, W09517, doi:10.1029/2010WR009429.

    • Search Google Scholar
    • Export Citation
  • Schirmer, M., , Wirz V. , , Clifton A. , , and Lehning M. , 2011: Persistence in intra-annual snow depth distribution: 1. Measurements and topographic control. Water Resour. Res., 47, W09516, doi:10.1029/2010WR009426.

    • Search Google Scholar
    • Export Citation
  • Scipión, D. E., , Mott R. , , Lehning M. , , Schneebeli M. , , and Berne A. , 2013: Seasonal small-scale spatial variability in alpine snowfall and snow accumulation. Water Resour. Res., 49, 1446–1457, doi:10.1002/wrcr.20135.

    • Search Google Scholar
    • Export Citation
  • Segal, M., , Garrat J. R. , , Pielke R. A. , , and Ye Z. , 1991: Scaling and numerical model evaluation of snow-cover effects on the generation and modification of daytime mesoscale circulations. J. Atmos. Sci., 48, 10241041, doi:10.1175/1520-0469(1991)048<1024:SANMEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serafin, S., , and Zardi D. , 2010: Daytime heat transfer processes related to slope flows and turbulent convection in an idealized mountain valley. J. Atmos. Sci., 67, 37393756, doi:10.1175/2010JAS3428.1.

    • Search Google Scholar
    • Export Citation
  • Skaloud, J., , Vallet J. , , Keller K. , , Veyssiere G. , , and Kölbl O. , 2006: An eye for landscapes—Rapid aerial mapping with handheld sensors. GPS World, 17, 2632.

    • Search Google Scholar
    • Export Citation
  • Sun, W., , Xu G. , , Gong P. , , and Liang S. , 2006: Fractal analysis of remotely sensed images: A review of methods and applications. Int. J. Remote Sens., 27, 49634990, doi:10.1080/01431160600676695.

    • Search Google Scholar
    • Export Citation
  • Trujillo, E., , Ramirez J. , , and Elder K. , 2007: Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields. Water Resour. Res., 43, W07409, doi:10.1029/2006WR005317.

    • Search Google Scholar
    • Export Citation
  • Trujillo, E., , Ramirez J. , , and Elder K. , 2009: Scaling properties and spatial organization of snow depth fields in sub-alpine forest and alpine tundra. Hydrol. Processes, 23, 15751590, doi:10.1002/hyp.7270.

    • Search Google Scholar
    • Export Citation
  • Webster, R., , and Oliver M. , 2007: Geostatistics for Environmental Scientists. John Wiley & Sons, 271 pp.

  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • WMO, 2008: Measurement of surface wind. WMO guide to meteorological instruments and methods of observation, WMO Doc. WMO-8, I.5.1–I.5.12. [Available online at http://library.wmo.int/pmb_ged/wmo_8_en-2012.pdf.]

  • Xue, M., , Droegemeier K. K. , , Wong V. , , Shapiro A. , , and Brewster K. , 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale non-hydrostatic atmospheric simulation model. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, doi:10.1007/s007030170027.

    • Search Google Scholar
    • Export Citation
  • Zardi, D., , and Whiteman C. D. , 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting, F. K. Chow, S. F. De Wekker, and B. J. Snyder, Eds., Springer, 35–119, doi:10.1007/978-94-007-4098-3_2.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 65 6
PDF Downloads 39 39 2

Atmospheric Flow Development and Associated Changes in Turbulent Sensible Heat Flux over a Patchy Mountain Snow Cover

View More View Less
  • 1 WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
  • | 2 Lawrence Livermore National Laboratory, Livermore, California
  • | 3 WSL Institute for Snow and Avalanche Research SLF, Davos, and Laboratory of Cryospheric Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
© Get Permissions
Restricted access

Abstract

In this study, the small-scale boundary layer dynamics and the energy balance over a fractional snow cover are numerically investigated. The atmospheric boundary layer flows over a patchy snow cover were calculated with an atmospheric model (Advanced Regional Prediction System) on a very high spatial resolution of 5 m. The numerical results revealed that the development of local flow patterns and the relative importance of boundary layer processes depend on the snow patch size distribution and the synoptic wind forcing. Energy balance calculations for quiescent wind situations demonstrated that well-developed katabatic winds exerted a major control on the energy balance over the patchy snow cover, leading to a maximum in the mean downward sensible heat flux over snow for high snow-cover fractions. This implies that if katabatic winds develop, total melt of snow patches may decrease for low snow-cover fractions despite an increasing ambient air temperature, which would not be predicted by most hydrological models. In contrast, stronger synoptic winds increased the effect of heat advection on the catchment’s melt behavior by enhancing the mean sensible heat flux over snow for lower snow-cover fractions. A sensitivity analysis to grid resolution suggested that the grid size is a critical factor for modeling the energy balance of a patchy snow cover. The comparison of simulation results from coarse (50 m) and fine (5 m) horizontal resolutions revealed a difference in the spatially averaged turbulent heat flux over snow of 40%–70% for synoptic cases and 95% for quiescent cases.

Denotes Open Access content.

Corresponding author address: Rebecca Mott, WSL Institute for Snow and Avalanche Research SLF, Flüelastr. 11, 7260 Davos Dorf, Switzerland. E-mail: mott@slf.ch

Abstract

In this study, the small-scale boundary layer dynamics and the energy balance over a fractional snow cover are numerically investigated. The atmospheric boundary layer flows over a patchy snow cover were calculated with an atmospheric model (Advanced Regional Prediction System) on a very high spatial resolution of 5 m. The numerical results revealed that the development of local flow patterns and the relative importance of boundary layer processes depend on the snow patch size distribution and the synoptic wind forcing. Energy balance calculations for quiescent wind situations demonstrated that well-developed katabatic winds exerted a major control on the energy balance over the patchy snow cover, leading to a maximum in the mean downward sensible heat flux over snow for high snow-cover fractions. This implies that if katabatic winds develop, total melt of snow patches may decrease for low snow-cover fractions despite an increasing ambient air temperature, which would not be predicted by most hydrological models. In contrast, stronger synoptic winds increased the effect of heat advection on the catchment’s melt behavior by enhancing the mean sensible heat flux over snow for lower snow-cover fractions. A sensitivity analysis to grid resolution suggested that the grid size is a critical factor for modeling the energy balance of a patchy snow cover. The comparison of simulation results from coarse (50 m) and fine (5 m) horizontal resolutions revealed a difference in the spatially averaged turbulent heat flux over snow of 40%–70% for synoptic cases and 95% for quiescent cases.

Denotes Open Access content.

Corresponding author address: Rebecca Mott, WSL Institute for Snow and Avalanche Research SLF, Flüelastr. 11, 7260 Davos Dorf, Switzerland. E-mail: mott@slf.ch
Save