• Al Bitar, A., , Leroux D. , , Kerr Y. H. , , Merlin O. , , Richaume P. , , Sahoo A. , , and Wood E. F. , 2012: Evaluation of SMOS soil moisture products over continental US using the SCAN/SNOTEL network. IEEE Trans. Geosci. Remote Sens., 50, 15721586, doi:10.1109/TGRS.2012.2186581.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., , Mahfouf J.-F. , , Belair S. , , and Deblonde G. , 2006: A global root-zone soil moisture analysis using simulated L-band brightness temperature in preparation for the Hydros satellite mission. J. Hydrometeor., 7, 11261146, doi:10.1175/JHM525.1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., , Viterbo P. , , Beljaars A. , , van den Hurk B. , , Hirschi M. , , Betts A. K. , , and Scipal K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Bircher, S., , Skou N. , , Jensen K. H. , , Walker J. P. , , and Rasmussen L. , 2012: A soil moisture and temperature network for SMOS validation in western Denmark. Hydrol. Earth Syst. Sci., 16, 14451463, doi:10.5194/hess-16-1445-2012.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B., , Schmugge T. , , Chang A. , , and Newton R. , 1979: Effect of surface roughness on the microwave emission from moist soils. J. Geophys. Res., 84, 56995706, doi:10.1029/JC084iC09p05699.

    • Search Google Scholar
    • Export Citation
  • Collow, T. W., , Robock A. , , Basara J. B. , , and Illston B. G. , 2012: Evaluation of SMOS retrievals of soil moisture over the central United States with currently available in situ observations. J. Geophys. Res., 117, D09113, doi:10.1029/2011JD017095.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B., and et al. , 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., , and Wood E. F. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26, 137149, doi:10.1016/S0309-1708(02)00088-X.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., , Houser P. R. , , Pauwels V. R. N. , , and Verhoest N. E. C. , 2007: State and bias estimation for soil moisture profiles by an ensemble Kalman filter: Effect of assimilation depth and frequency. Water Resour. Res., 43, W06401, doi:10.1029/2006WR005100.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., , Reichle R. H. , , and Pauwels V. R. N. , 2013: Global calibration of the GEOS-5 L-band microwave radiative transfer model over nonfrozen land using SMOS observations. J. Hydrometeor., 14, 765785, doi:10.1175/JHM-D-12-092.1.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., , Reichle R. H. , , and Vrugt J. A. , 2014: Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations. Remote Sens. Environ., 148, 146157, doi:10.1016/j.rse.2014.03.030.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and et al. , 2009: AMMA Land Surface Model Intercomparison Experiment coupled to the Community Microwave Emission Model: ALMIP-MEM. J. Geophys. Res., 114, D05108, doi:10.1029/2008JD010724.

    • Search Google Scholar
    • Export Citation
  • Draper, C., , Reichle R. , , de Jeu R. , , Naeimi V. , , Parinussa R. , , and Wagner W. , 2013: Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ., 137, 288298, doi:10.1016/j.rse.2013.06.013.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., , Holmes T. , , de Rosnay P. , , and Balsamo G. , 2009: Comparing ERA-40-based L-band brightness temperatures with Skylab observations: A calibration/validation study using the Community Microwave Emission Model. J. Hydrometeor., 10, 213226, doi:10.1175/2008JHM964.1.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and et al. , 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Escorihuela, M. J., , Chanzy A. , , Wigneron J. P. , , and Kerr Y. H. , 2010: Effective soil moisture sampling depth of L-band radiometry: A case study. Remote Sens. Environ., 114, 9951001, doi:10.1016/j.rse.2009.12.011.

    • Search Google Scholar
    • Export Citation
  • Gao, H., , Jackson T. J. , , Drusch M. , , and Bindlish R. , 2006: Using TRMM/TMI to retrieve surface soil moisture over the southern United States from 1998 to 2002. J. Hydrometeor., 7, 2338, doi:10.1175/JHM473.1.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., , Kling H. , , Yilmaz K. K. , , and Martinez G. F. , 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, doi:10.1016/j.jhydrol.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., , and Ignatov A. , 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543, doi:10.1080/014311698215333.

    • Search Google Scholar
    • Export Citation
  • Han, X., , Hendricks Franssen H.-J. , , Li X. , , Zhang Y. , , Montzka C. , , and Vereecken H. , 2013: Joint assimilation of surface temperature and L-band microwave brightness temperature in land data assimilation. Vadose Zone J., 12, doi:10.2136/vzj2012.0072.

    • Search Google Scholar
    • Export Citation
  • Han, X., , Hendricks Franssen H.-J. , , Montzka C. , , and Vereecken H. , 2014: Soil moisture and soil properties estimation in the Community Land Model with synthetic brightness temperature observations. Water Resour. Res., 50, 60816105, doi:10.1002/2013WR014586.

    • Search Google Scholar
    • Export Citation
  • Hansen, M., , Defries R. , , Townshend J. , , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364, doi:10.1080/014311600210209.

    • Search Google Scholar
    • Export Citation
  • Holmes, T. R. H., , Drusch M. , , Wigneron J.-P. , , and de Jeu R. A. M. , 2008: A global simulation of microwave emission: Error structures based on output from ECMWF’s operational integrated forecast system. IEEE Trans. Geosci. Remote Sens., 46, 846856, doi:10.1109/TGRS.2007.914798.

    • Search Google Scholar
    • Export Citation
  • Jackson, T., 1980: Profile soil moisture from surface measurements. J. Irrig. Drain. Div., 106, 8192.

  • Jackson, T., 1993: Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Processes, 7, 139152, doi:10.1002/hyp.3360070205.

    • Search Google Scholar
    • Export Citation
  • Jackson, T., , Schmugge T. J. , , and Wang J. R. , 1982: Passive microwave remote sensing of soil moisture under vegetation canopies. Water Resour. Res., 18, 11371142, doi:10.1029/WR018i004p01137.

    • Search Google Scholar
    • Export Citation
  • Jacquette, E., , Al Bitar A. , , Mialon A. , , Kerr Y. , , Quesney A. , , Cabot F. , , and Richaume P. , 2010: SMOS CATDS level 3 global products over land. Remote Sensing for Agriculture, Ecosystems, and Hydrology XII, C. M. U. Neale and A. Maltese, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7824), 78240K, doi:10.1117/12.865093.

  • Kennedy, J., , and Eberhart R. , 1995: Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, Vol. 4, Perth, Australia, IEEE, 19421948, doi:10.1109/ICNN.1995.488968.

  • Kerr, Y. H., , Waldteufel P. , , Wigneron J. P. , , Martinuzzi J. M. , , Font J. , , and Berger M. , 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39, 17291735, doi:10.1109/36.942551.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., , Waldteufel P. , , Richaume P. , , Davenport I. , , Ferrazzoli P. , , and Wigneron J. P. , 2011: Algorithm theoretical basis document (ATBD) for the SMOS level 2 soil moisture processor. Tech. Rep. SO-TN-ESL-SM-GS-0001, 137 pp.

  • Kerr, Y. H., and et al. , 2012: The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 50, 13841403, doi:10.1109/TGRS.2012.2184548.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Guo Z. , , Yang R. , , Dirmeyer P. A. , , Mitchell K. , , and Puma M. J. , 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335, doi:10.1175/2009JCLI2832.1.

    • Search Google Scholar
    • Export Citation
  • Leroux, D. J., , Kerr Y. H. , , Al Bitar A. , , Bindlish R. , , Jackson T. J. , , Berthelot B. , , and Portet G. , 2014: Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in US. IEEE Trans. Geosci. Remote Sens., 52, 15621571, doi:10.1109/TGRS.2013.2252468.

    • Search Google Scholar
    • Export Citation
  • Li, H., , Sheffield J. , , and Wood E. F. , 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, doi:10.1029/2009JD012882.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Lettenmaier D. , , Wood E. , , and Burges S. , 1994: A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Wood E. , , and Lettenmaier D. , 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Wood E. , , and Lettenmaier D. , 1999: Modeling ground heat flux in land surface parameterization schemes. J. Geophys. Res., 104, 95819600, doi:10.1029/98JD02307.

    • Search Google Scholar
    • Export Citation
  • Martens, B., , Lievens H. , , Colliander A. , , Jackson T. J. , , and Verhoest N. E. C. , 2015: Estimating effective roughness parameters of the L-MEB model for soil moisture retrieval using passive microwave observations from SMAPVEX12. IEEE Trans. Geosci. Remote Sens., 53, 40914103, doi:10.1109/TGRS.2015.2390259.

    • Search Google Scholar
    • Export Citation
  • Maurer, E., , O’Donnell G. , , Lettenmaier D. , , and Roads J. , 2001: Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model. J. Geophys. Res., 106, 17 84117 862, doi:10.1029/2000JD900828.

    • Search Google Scholar
    • Export Citation
  • Maurer, E., , Wood A. , , Adam J. , , Lettenmaier D. , , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, D., , and White R. , 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact., 2, doi:10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mironov, V., , Dobson M. , , Kaupp V. , , Komarov S. , , and Kleshchenko V. , 2004: Generalized refractive mixing dielectric model for moist soils. IEEE Trans. Geosci. Remote Sens., 42, 773785, doi:10.1109/TGRS.2003.823288.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K., and et al. , 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Montzka, C., , Grant J. P. , , Moradkhani H. , , Hendricks-Franssen H.-J. , , Weihermueller L. , , Drusch M. , , and Vereecken H. , 2013: Estimation of radiative transfer parameters from L-band passive microwave brightness temperatures using advanced data assimilation. Vadose Zone J., 12, doi:10.2136/vzj2012.0040.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., , Nemani R. R. , , and Running S. W. , 1997: Algorithm for the estimation of global land cover, LAI and FPAR based on radiative transfer models. IEEE Trans. Geosci. Remote Sens., 35, 13801393, doi:10.1109/36.649788.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , Schnur R. , , and Lettenmaier D. , 2001: Global retrospective estimation of soil moisture using the Variable Infiltration Capacity land surface model, 1980–93. J. Climate, 14, 17901808, doi:10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., 1977: Theory for passive microwave remote sensing of near-surface soil moisture. J. Geophys. Res., 82, 31083118, doi:10.1029/JB082i020p03108.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., , and Entekhabi D. , 1996: Passive microwave remote sensing of soil moisture. J. Hydrol., 184, 101129, doi:10.1016/0022-1694(95)02970-2.

    • Search Google Scholar
    • Export Citation
  • Oliva, R., , Daganzo-Eusebio E. , , Kerr Y. H. , , Mecklenburg S. , , Nieto S. , , Richaume P. , , and Gruhier C. , 2012: SMOS radio frequency interference scenario: status and actions taken to improve the RFI environment in the 1400–1427-MHz passive band. IEEE Trans. Geosci. Remote Sens., 50, 14271439, doi:10.1109/TGRS.2012.2182775.

    • Search Google Scholar
    • Export Citation
  • Pan, M., , Wood E. F. , , McLaughlin D. B. , , Entekhabi D. , , and Luo L. , 2009: A multiscale ensemble filtering system for hydrologic data assimilation. Part I: Implementation and synthetic experiment. J. Hydrometeor., 10, 794806, doi:10.1175/2009JHM1088.1.

    • Search Google Scholar
    • Export Citation
  • Pan, M., , Sahoo A. , , and Wood E. F. , 2014: Improving soil moisture retrievals from a physically-based radiative transfer model. Remote Sens. Environ., 140, 130140, doi:10.1016/j.rse.2013.08.020.

    • Search Google Scholar
    • Export Citation
  • Parrens, M., , Calvet J. C. , , de Rosnay P. , , and Decharme B. , 2014: Benchmarking of L-band soil microwave emission models. Remote Sens. Environ., 140, 407419, doi:10.1016/j.rse.2013.09.017.

    • Search Google Scholar
    • Export Citation
  • Pauwels, V. R. N., , and De Lannoy G. J. M. , 2011: Multivariate calibration of a water and energy balance model in the spectral domain. Water Resour. Res., 47, W07523, doi:10.1029/2010WR010292.

    • Search Google Scholar
    • Export Citation
  • Pauwels, V. R. N., , Hoeben R. , , Verhoest N. E. C. , , and De Troch F. P. , 2001: The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation. J. Hydrol., 251, 88102, doi:10.1016/S0022-1694(01)00440-1.

    • Search Google Scholar
    • Export Citation
  • Pauwels, V. R. N., , Hoeben R. , , Verhoest N. E. C. , , De Troch F. P. , , and Troch P. A. , 2002: Improvement of TOPLATS-based discharge predictions through assimilation of ERS-based remotely sensed soil moisture values. Hydrol. Processes, 16, 9951013, doi:10.1002/hyp.315.

    • Search Google Scholar
    • Export Citation
  • Peischl, S., , Walker J. P. , , Ryu D. , , Kerr Y. H. , , Panciera R. , , and Ruediger C. , 2012: Wheat canopy structure and surface roughness effects on multiangle observations at L-band. IEEE Trans. Geosci. Remote Sens., 50, 14981506, doi:10.1109/TGRS.2011.2174644.

    • Search Google Scholar
    • Export Citation
  • Pellarin, T., and et al. , 2003: Two-year global simulation of L-band brightness temperatures over land. IEEE Trans. Geosci. Remote Sens., 41, 21352139, doi:10.1109/TGRS.2003.815417.

    • Search Google Scholar
    • Export Citation
  • Rahmoune, R., , Ferrazzoli P. , , Kerr Y. H. , , and Richaume P. , 2013: SMOS level 2 retrieval algorithm over forests: Description and generation of global maps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 14301439, doi:10.1109/JSTARS.2013.2256339.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., , and Koster R. D. , 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett.,31, L19501, doi:10.1029/2004GL020938.

  • Reichle, R., , McLaughlin D. B. , , and Entekhabi D. , 2001: Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications. IEEE Trans. Geosci. Remote Sens., 39, 17081718, doi:10.1109/36.942549.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., , Koster R. D. , , Dong J. , , and Berg A. , 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5, 430442, doi:10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., , Koster R. D. , , Liu P. , , Mahanama S. P. P. , , Njoku E. G. , , and Owe M. , 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112, D09108, doi:10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Sabater, J. M., , De Rosnay P. , , and Balsamo G. , 2011: Sensitivity of L-band NWP forward modelling to soil roughness. Int. J. Remote Sens., 32, 56075620, doi:10.1080/01431161.2010.507260.

    • Search Google Scholar
    • Export Citation
  • Sahoo, A. K., , De Lannoy G. J. M. , , Reichle R. H. , , and Houser P. R. , 2013: Assimilation and downscaling of satellite observed soil moisture over the Little River Experimental Watershed in Georgia, USA. Adv. Water Resour., 52, 1933, doi:10.1016/j.advwatres.2012.08.007.

    • Search Google Scholar
    • Export Citation
  • Scheerlinck, K., , Pauwels V. R. N. , , Vernieuwe H. , , and De Baets B. , 2009: Calibration of a water and energy balance model: Recursive parameter estimation versus particle swarm optimization. Water Resour. Res., 45, W10422, doi:10.1029/2009WR008051.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , and Wood E. F. , 2008: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21, 432458, doi:10.1175/2007JCLI1822.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and et al. , 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model-simulated snow cover extent. J. Geophys. Res., 108, 8849, doi:10.1029/2002JD003274.

    • Search Google Scholar
    • Export Citation
  • Verdin, K. L., , and Jenson S. K. , 1996: Development of continental scale digital elevation models and extraction of hydrographic features. Proc. Third Int. Conf./Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM, National Center for Geographic Information and Analysis. [Available online at www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/verdin_kristine/santafe2.html.]

  • Vereecken, H., , Weihermueller L. , , Jonard F. , , and Montzka C. , 2012: Characterization of crop canopies and water stress related phenomena using microwave remote sensing methods: A review. Vadose Zone J., 11, doi:10.2136/vzj2011.0138ra.

    • Search Google Scholar
    • Export Citation
  • Verhoest, N. E. C., and et al. , 2015: Copula-based downscaling of coarse-scale soil moisture observations with implicit bias correction. IEEE Trans. Geosci. Remote Sens., 53, 3507–3521, doi:10.1109/TGRS.2014.2378913.

    • Search Google Scholar
    • Export Citation
  • Wigneron, J., , Laguerre L. , , and Kerr Y. , 2001: A simple parameterization of the L-band microwave emission from rough agricultural soils. IEEE Trans. Geosci. Remote Sens., 39, 16971707, doi:10.1109/36.942548.

    • Search Google Scholar
    • Export Citation
  • Wigneron, J., and et al. , 2007: L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields. Remote Sens. Environ., 107, 639655, doi:10.1016/j.rse.2006.10.014.

    • Search Google Scholar
    • Export Citation
  • Wigneron, J., and et al. , 2012: First evaluation of the simultaneous SMOS and ELBARA-II observations in the Mediterranean region. Remote Sens. Environ., 124, 2637, doi:10.1016/j.rse.2012.04.014.

    • Search Google Scholar
    • Export Citation
  • Wilker, H., , Drusch M. , , Seuffert G. , , and Simmer C. , 2006: Effects of the near-surface soil moisture profile on the assimilation of L-band microwave brightness temperature. J. Hydrometeor., 7, 433442, doi:10.1175/JHM498.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 13
PDF Downloads 17 17 4

Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin

View More View Less
  • 1 * Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium
  • | 2 Centre d’Etudes Spatiales de la Biosphère, Toulouse, France
  • | 3 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 4 European Space Agency, Noordwijk, Netherlands
  • | 5 Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
  • | 6 ** Forschungszentrum Jülich, Jülich, Germany
  • | 7 Land Surface Hydrology Group, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

The Soil Moisture Ocean Salinity (SMOS) satellite mission routinely provides global multiangular observations of brightness temperature TB at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational flood forecasts through an improved estimation of soil moisture SM. To accommodate for the direct assimilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as a forward operator for the simulation of multiangular and multipolarization top of the atmosphere TBs. This study investigates the use of the Variable Infiltration Capacity model coupled with the Community Microwave Emission Modelling Platform for simulating SMOS TB observations over the upper Mississippi basin, United States. For a period of 2 years (2010–11), a comparison between SMOS TBs and simulations with literature-based RTM parameters reveals a basin-averaged bias of 30 K. Therefore, time series of SMOS TB observations are used to investigate ways for mitigating these large biases. Specifically, the study demonstrates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After cumulative distribution function matching the SM climatology of the LSM to SMOS retrievals, the average bias decreases from 30 K to less than 5 K. Further improvements can be made through calibration of RTM parameters related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory step for data assimilation.

Corresponding author address: Hans Lievens, Laboratory of Hydrology and Water Management, Ghent University, Coupure links 653, Ghent, Belgium. E-mail: hans.lievens@ugent.be

Abstract

The Soil Moisture Ocean Salinity (SMOS) satellite mission routinely provides global multiangular observations of brightness temperature TB at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational flood forecasts through an improved estimation of soil moisture SM. To accommodate for the direct assimilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as a forward operator for the simulation of multiangular and multipolarization top of the atmosphere TBs. This study investigates the use of the Variable Infiltration Capacity model coupled with the Community Microwave Emission Modelling Platform for simulating SMOS TB observations over the upper Mississippi basin, United States. For a period of 2 years (2010–11), a comparison between SMOS TBs and simulations with literature-based RTM parameters reveals a basin-averaged bias of 30 K. Therefore, time series of SMOS TB observations are used to investigate ways for mitigating these large biases. Specifically, the study demonstrates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After cumulative distribution function matching the SM climatology of the LSM to SMOS retrievals, the average bias decreases from 30 K to less than 5 K. Further improvements can be made through calibration of RTM parameters related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory step for data assimilation.

Corresponding author address: Hans Lievens, Laboratory of Hydrology and Water Management, Ghent University, Coupure links 653, Ghent, Belgium. E-mail: hans.lievens@ugent.be
Save