• Allen, R. G., , Pereira L. S. , , Raes D. , , and Smith M. , 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Beguería S., , Vicente-Serrano S. M. , , and Beguería M. S. , 2013: SPEI: Calculation of the standardised precipitation–evapotranspiration index. Version 1.6, R package. [Available online at http://cran.r-project.org/web/packages/SPEI/index.html.]

  • Cosby, B., , Hornberger G. , , Clapp R. , , and Ginn T. , 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682690, doi:10.1029/WR020i006p00682.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Characteristics and trends in various forms of the Palmer drought severity index during 1900–2008. J. Geophys. Res., 116, D12115, doi:10.1029/2010JD015541.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2012: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , Trenberth K. E. , , and Qian T. , 2004: A global dataset of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130, doi:10.1175/JHM-386.1.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W., , Scipal K. , , Parinussa R. , , Liu Y. , , Wagner W. , , De Jeu R. , , and Naeimi V. , 2010: Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci., 14, 26052616, doi:10.5194/hess-14-2605-2010.

    • Search Google Scholar
    • Export Citation
  • Dracup, J. A., , Lee K. S. , , and Paulson E. G. J. , 1980: On the definition of droughts. Water Resour. Res., 16, 297302, doi:10.1029/WR016i002p00297.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., , Dirmeyer P. , , and Gao X. , 2004: Validation and forecast applicability of multi-year global soil wetness products. COLA Tech. Rep., 40 pp. [Available online at ftp://cola.gmu.edu/pub/ctr/ctr_161.pdf.]

  • Guttman, N. B., 1998: Comparing the Palmer drought index and the Standardized Precipitation Index. J. Amer. Water Resour. Assoc., 34, 113121, doi:10.1111/j.1752-1688.1998.tb05964.x.

    • Search Google Scholar
    • Export Citation
  • Heim, R. R., Jr., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491165, doi:10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., 1997: Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resour. Res., 33, 14751484, doi:10.1029/97WR00661.

    • Search Google Scholar
    • Export Citation
  • Ji, L., , and Peters A. J. , 2003: Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ., 87, 8598, doi:10.1016/S0034-4257(03)00174-3.

    • Search Google Scholar
    • Export Citation
  • Jin, H., , Li S. , , Cheng G. , , Shaoling W. , , and Li X. , 2000: Permafrost and climatic change in China. Global Planet. Change, 26, 387404, doi:10.1016/S0921-8181(00)00051-5.

    • Search Google Scholar
    • Export Citation
  • Keyantash, J., , and Dracup J. A. , 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83, 11671180, doi:10.1175/1520-0477(2002)083<1191:TQODAE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, H., , Robock A. , , Liu S. , , Mo X. , , and Viterbo P. , 2005: Evaluation of reanalysis soil moisture simulations using updated Chinese soil moisture observations. J. Hydrometeor., 6, 180193, doi:10.1175/JHM416.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., , Robock A. , , and Wild M. , 2007: Evaluation of Intergovernmental Panel on Climate Change Fourth Assessment soil moisture simulations for the second half of the twentieth century. J. Geophys. Res.,112, D06106, doi:10.1029/2006JD007455.

  • McKee, T. B., , Doesken N. J. , , and Kleist J. , 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • McVicar, T. R., and et al. , 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416–417, 182205, doi:10.1016/j.jhydrol.2011.10.024.

    • Search Google Scholar
    • Export Citation
  • Meze-Hausken, E., 2004: Contrasting climate variability and meteorological drought with perceived drought and climate change in northern Ethiopia. Climate Res., 27, 1931, doi:10.3354/cr027019.

    • Search Google Scholar
    • Export Citation
  • Mika, J., , Horvath S. , , Makra L. , , and Dunkel Z. , 2005: The Palmer drought severity index (PDSI) as an indicator of soil moisture. Phys. Chem. Earth, 30, 223230, doi:10.1016/j.pce.2004.08.036.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., , and Singh V. P. , 2010: A review of drought concepts. J. Hydrol., 391, 202216, doi:10.1016/j.jhydrol.2010.07.012.

  • Ntale, H. K., , and Gan T. Y. , 2003: Drought indices and their application to East Africa. Int. J. Climatol., 23, 13351357, doi:10.1002/joc.931.

    • Search Google Scholar
    • Export Citation
  • Olukayode Oladipo, E., 1985: A comparative performance analysis of three meteorological drought indices. Int. J. Climatol., 5, 655664, doi:10.1002/joc.3370050607.

    • Search Google Scholar
    • Export Citation
  • Owe, M., , De Jeu R. , , and Walker J. , 2001: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens., 39, 16431654, doi:10.1109/36.942542.

    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. Weather Bureau Rep., U.S. Dept. of Commerce, Washington, DC, 58 pp.

  • Paulo, A. A., , and Pereira L. S. , 2006: Drought concepts and characterization: Comparing drought indices applied at local and regional scales. Water Int., 31, 3749, doi:10.1080/02508060608691913.

    • Search Google Scholar
    • Export Citation
  • Piao, S., and et al. , 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467, 4351, doi:10.1038/nature09364.

    • Search Google Scholar
    • Export Citation
  • Rawls, W., , Pachepsky Y. A. , , Ritchie J. , , Sobecki T. , , and Bloodworth H. , 2003: Effect of soil organic carbon on soil water retention. Geoderma, 116, 6176, doi:10.1016/S0016-7061(03)00094-6.

    • Search Google Scholar
    • Export Citation
  • Scaini, A., , Sánchez N. , , Vicente-Serrano S. M. , , and Martínez-Fernández J. , 2015: SMOS-derived soil moisture anomalies and drought indices: A comparative analysis using in situ measurements. Hydrol. Processes, 29, 373383, doi:10.1002/hyp.10150.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Wood E. F. , , and Roderick M. L. , 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, doi:10.1038/nature11575.

    • Search Google Scholar
    • Export Citation
  • Sims, A. P., , Niyogi D. S. , , and Raman S. , 2002: Adopting drought indices for estimating soil moisture: A North Carolina case study. Geophys. Res. Lett., 29, 1183, doi:10.1029/2001GL013343.

    • Search Google Scholar
    • Export Citation
  • Tsang, L., , Pan J. , , Liang D. , , Li Z. , , Cline D. W. , , and Tan Y. , 2007: Modeling active microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple-scattering effects. IEEE T. Geosci. Remote, 45, 9901004, doi:10.1109/TGRS.2006.888854.

    • Search Google Scholar
    • Export Citation
  • Van der Schrier, G., , Jones P. D. , , and Briffa K. R. , 2011: The sensitivity of the PDSI to the Thornthwaite and Penman–Monteith parameterizations for potential evapotranspiration. J. Geophys. Res., 116, D03106, doi:10.1029/2010JD015001.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., , Beguería S. , , and López-Moreno J. I. , 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, doi:10.1175/2009JCLI2909.1.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and et al. , 2012: Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact., 16, doi:10.1175/2012EI000434.1.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., , Lemoine G. , , Borgeaud M. , , and Rott H. , 1999: A study of vegetation cover effects on ERS scatterometer data. IEEE Trans. Geosci. Remote Sens., 37, 938948, doi:10.1109/36.752212.

    • Search Google Scholar
    • Export Citation
  • Wei, S., and et al. , 2013: A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst., 5, 212224, doi:10.1002/jame.20026.

    • Search Google Scholar
    • Export Citation
  • Wells, N., , Goddard S. , , and Hayes M. J. , 2004: A self-calibrating Palmer drought severity index. J. Climate, 17, 23352351, doi:10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wiesmann, A., , and Mätzler C. , 1999: Microwave emission model of layered snowpacks. Remote Sens. Environ., 70, 307316, doi:10.1016/S0034-4257(99)00046-2.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., , and Glantz M. H. , 1985: Understanding the drought phenomenon: The role of definitions. Water Int., 10, 111120, doi:10.1080/02508068508686328.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 332 40
PDF Downloads 212 212 23

Commonly Used Drought Indices as Indicators of Soil Moisture in China

View More View Less
  • 1 Department of Geographical Information Engineering, China Agricultural University, Beijing, China, and Department of Geography, The Ohio State University, Columbus, Ohio
  • | 2 Department of Geography, The Ohio State University, Columbus, Ohio
© Get Permissions
Restricted access

Abstract

Soil moisture shortages adversely affecting agriculture are significantly associated with meteorological drought. Because of limited soil moisture observations with which to monitor agricultural drought, characterizing soil moisture using drought indices is of great significance. The relationship between commonly used drought indices and soil moisture is examined here using Chinese surface weather data and calculated station-based drought indices. Outside of northeastern China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer index time scales. Multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0–5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90–100-cm depth than the Z index. Soil bulk density and soil organic carbon density are the two main soil properties affecting the spatial variations of the soil moisture–drought indices relationship. The study may facilitate agriculture drought monitoring with commonly used drought indices calculated from weather station data.

Corresponding author address: Hongshuo Wang, Department of Geographical Information Engineering, China Agricultural University, 505 Information and Electrical Building, 17 East Qinghua Road, Beijing 100083, China. E-mail: whs8gis@gmail.com

This article is included in the Advancing Drought Monitoring and Prediction Special Collection.

Abstract

Soil moisture shortages adversely affecting agriculture are significantly associated with meteorological drought. Because of limited soil moisture observations with which to monitor agricultural drought, characterizing soil moisture using drought indices is of great significance. The relationship between commonly used drought indices and soil moisture is examined here using Chinese surface weather data and calculated station-based drought indices. Outside of northeastern China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer index time scales. Multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0–5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90–100-cm depth than the Z index. Soil bulk density and soil organic carbon density are the two main soil properties affecting the spatial variations of the soil moisture–drought indices relationship. The study may facilitate agriculture drought monitoring with commonly used drought indices calculated from weather station data.

Corresponding author address: Hongshuo Wang, Department of Geographical Information Engineering, China Agricultural University, 505 Information and Electrical Building, 17 East Qinghua Road, Beijing 100083, China. E-mail: whs8gis@gmail.com

This article is included in the Advancing Drought Monitoring and Prediction Special Collection.

Save