• Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Creamean, J. M., and et al. , 2013: Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science,339, 1572–1578, doi:10.1126/science.1227279.

  • Dettinger, M. D., , Ralph F. M. , , Das T. , , Neiman P. J. , , and Cayan D. R. , 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Guan, B., , Molotch N. P. , , Waliser D. E. , , Fetzer E. J. , , and Neiman P. J. , 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.

    • Search Google Scholar
    • Export Citation
  • Hansen, C., , Kaplan M. L. , , Mensing S. A. , , Underwood S. J. , , Lewis J. M. , , King K. C. , , and Haugland J. E. , 2013: “They just don’t make storms like this one anymore”: Analyzing the anomalous record snowfall event of 1959. J. Oper. Meteor., 1, 5265, doi:10.15191/nwajom.2013.0105.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Shi W. , , Yarosh E. , , and Joyce R. , 2000: Improved U.S. precipitation quality control system and analysis. NCEP/Climate Prediction Center ATLAS 7, National Centers for Environmental Prediction. [Available online at www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/index.html.]

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, M. L., , Adaniya C. S. , , Marzette P. J. , , King K. C. , , Underwood S. J. , , and Lewis J. M. , 2009: The role of upstream midtropospheric circulations in the Sierra Nevada enabling leeside (spillover) precipitation. Part II: A secondary atmospheric river accompanying a midlevel jet. J. Hydrometeor., 10, 13271354, doi:10.1175/2009JHM1106.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, M. L., , Vellore R. K. , , Marzette P. J. , , and Lewis J. M. , 2012: The role of windward-side diabatic heating in Sierra Nevada spillover precipitation. J. Hydrometeor., 13, 11721194, doi:10.1175/JHM-D-11-06.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J., , Waliser D. , , Neiman P. , , Guan B. , , Ryoo J.-M. , , and Wick G. , 2013: Effects of atmospheric river landfalls on the cold season precipitation in California. Climate Dyn., 40, 465474, doi:10.1007/s00382-012-1322-3.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., , Neiman P. J. , , Moore B. J. , , Hughes M. , , Yuter S. E. , , and Ralph F. M. , 2013: Kinematic and thermodynamic structures of Sierra Barrier jets and overrunning atmospheric rivers during a landfalling winter storm in Northern California. Mon. Wea. Rev., 141, 20152036, doi:10.1175/MWR-D-12-00277.1.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and et al. , 2001: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knowles, N., , Dettinger M. D. , , and Cayan D. R. , 2006: Trends in snowfall versus rainfall in the western United States. J. Climate, 19, 45454559, doi:10.1175/JCLI3850.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Ralph F. M. , , Wick G. A. , , Lundquist J. D. , , and Dettinger M. D. , 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor.,9, 22–47, doi:10.1175/2007JHM855.1.

  • Neiman, P. J., , Schick L. J. , , Ralph F. M. , , Hughes M. , , and Wick G. A. , 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Hughes M. , , Moore B. J. , , Ralph F. M. , , and Sukovich E. M. , 2013a: Sierra barrier jets, atmospheric rivers, and precipitation characteristics in Northern California: A composite perspective based on a network of wind profilers. Mon. Wea. Rev., 141, 42114233, doi:10.1175/MWR-D-13-00112.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Ralph F. M. , , Moore B. J. , , Hughes M. , , Mahoney K. M. , , Cordeira J. M. , , and Dettinger M. D. , 2013b: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor.,14, 460–484, doi:10.1175/JHM-D-12-0101.1.

  • O’Hara, B. F., , Kaplan M. L. , , and Underwood S. J. , 2009: Synoptic climatological analyses of extreme snowfalls in the Sierra Nevada. Wea. Forecasting, 24, 16101624, doi:10.1175/2009WAF2222249.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , and Dettinger M. D. , 2011: Storms, floods, and the science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 92, 265266, doi:10.1029/2011EO320001.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , and Rotunno R. , 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, doi:10.1175/MWR2896.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , Wick G. A. , , Gutman S. I. , , Dettinger M. D. , , Cayan D. R. , , and White A. B. , 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett.,33, L13801, doi:10.1029/2006GL026689.

  • Ralph, F. M., , Neiman P. J. , , Kiladis G. N. , , Weickmann K. , , and Reynolds D. W. , 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Coleman T. , , Neiman P. J. , , Zamora R. J. , , and Dettinger M. D. , 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, doi:10.1175/JHM-D-12-076.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., , and Steenburgh W. J. , 2012: Quantifying the role of atmospheric rivers in the interior western United States. Atmos. Sci. Lett., 13, 257261, doi:10.1002/asl.392.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., , Steenburgh W. J. , , and Ralph F. M. , 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., , Yuter S. E. , , Neiman P. J. , , and Kingsmill D. E. , 2010: Water vapor fluxes and orographic precipitation over Northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100, doi:10.1175/2009MWR2939.1.

    • Search Google Scholar
    • Export Citation
  • Underwood, S. J., , Kaplan M. L. , , and King K. C. , 2009: The role of upstream midtropospheric circulations in the Sierra Nevada enabling leeside (spillover) precipitation. Part I: A synoptic-scale analysis of spillover precipitation and flooding in a leeside basin. J. Hydrometeor., 10, 13091326, doi:10.1175/2009JHM1105.1.

    • Search Google Scholar
    • Export Citation
  • Warner, M. D., , Mass C. F. , , and Salathe E. P. , 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 20212043, doi:10.1175/MWR-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., , and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev.,126, 725–735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 9
PDF Downloads 24 24 6

A Climatology of the Vertical Structure of Water Vapor Transport to the Sierra Nevada in Cool Season Atmospheric River Precipitation Events

View More View Less
  • 1 Division of Hydrologic Sciences, Desert Research Institute, and Graduate Program of Hydrologic Sciences, University of Nevada, Reno, Reno, Nevada
  • | 2 Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada
  • | 3 Division of Hydrologic Sciences, Desert Research Institute, Reno, Nevada
  • | 4 Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada
© Get Permissions
Restricted access

Abstract

This study presents the climatology of the vertical structure of water vapor flux above the Sierra Nevada during significant cool season (November–April) precipitation events. Atmospheric river (AR) and non-AR events are analyzed to better understand the effect of this structure on precipitation patterns. Daily measurements of cool season precipitation at seven weather stations around the Tahoe basin from 1974 to 2012 and NCEP/CPC gridded daily precipitation analysis along the Sierra crest for the period 1948–2012 are examined. NCEP–NCAR reanalysis and soundings from Oakland are used to look at upper atmospheric conditions, including the presence of vapor transport by low- and midlevel jets on storm days as well as upstream static stability in relation to significant precipitation events. Key findings are as follows: 1) ARs play a disproportionately large role in generating Tahoe basin precipitation during the cool season; 2) strong midlevel vapor transport needs to occur in tandem with low-level transport to achieve the most extreme 2-day precipitation in the Tahoe basin; 3) when low- to midlevel vapor transport is present on days with a defined AR, the local maximum in 2-day precipitation intensity decreases with distance from the Sierra crest, and on non-AR days, the relative increase in 2-day precipitation intensity due to low- and midlevel vapor transport does not vary based on distance from the Sierra crest; 4) AR and non-AR moisture fluxes are significantly modified by upstream static stability; and 5) understanding the impacts of ARs and their lower- and midlevel moisture flux structure are crucial components of the hydrometeorology in this region.

Corresponding author address: Rina Schumer, Division of Hydrologic Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512. E-mail: rina@dri.edu

Abstract

This study presents the climatology of the vertical structure of water vapor flux above the Sierra Nevada during significant cool season (November–April) precipitation events. Atmospheric river (AR) and non-AR events are analyzed to better understand the effect of this structure on precipitation patterns. Daily measurements of cool season precipitation at seven weather stations around the Tahoe basin from 1974 to 2012 and NCEP/CPC gridded daily precipitation analysis along the Sierra crest for the period 1948–2012 are examined. NCEP–NCAR reanalysis and soundings from Oakland are used to look at upper atmospheric conditions, including the presence of vapor transport by low- and midlevel jets on storm days as well as upstream static stability in relation to significant precipitation events. Key findings are as follows: 1) ARs play a disproportionately large role in generating Tahoe basin precipitation during the cool season; 2) strong midlevel vapor transport needs to occur in tandem with low-level transport to achieve the most extreme 2-day precipitation in the Tahoe basin; 3) when low- to midlevel vapor transport is present on days with a defined AR, the local maximum in 2-day precipitation intensity decreases with distance from the Sierra crest, and on non-AR days, the relative increase in 2-day precipitation intensity due to low- and midlevel vapor transport does not vary based on distance from the Sierra crest; 4) AR and non-AR moisture fluxes are significantly modified by upstream static stability; and 5) understanding the impacts of ARs and their lower- and midlevel moisture flux structure are crucial components of the hydrometeorology in this region.

Corresponding author address: Rina Schumer, Division of Hydrologic Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512. E-mail: rina@dri.edu
Save