• Balsamo, G., , Mahfouf J.-F. , , Bélair S. , , and Deblonde G. , 2006: A global root-zone soil moisture analysis using simulated L-band brightness temperature in preparation for the Hydros satellite mission. J. Hydrometeor., 7, 11261146, doi:10.1175/JHM525.1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., , Mahfouf J.-F. , , Bélair S. , , and Deblonde G. , 2007: A land data assimilation system for soil moisture and temperature: An information content study. J. Hydrometeor., 8, 12251242, doi:10.1175/2007JHM819.1.

    • Search Google Scholar
    • Export Citation
  • Barbu, A. L., , Calvet J.-C. , , Mahfouf J.-F. , , Albergel C. , , and Lafont S. , 2011: Assimilation of soil wetness index and leaf area index into the ISBA-A-gs land surface model: Grassland case study. Biogeosciences, 8, 19711986, doi:10.5194/bg-8-1971-2011.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., , Crevier L.-P. , , Mailhot J. , , Bilodeau B. , , and Delage Y. , 2003a: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370, doi:10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., , Brown R. , , Mailhot J. , , Bilodeau B. , , and Crevier L.-P. , 2003b: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. J. Hydrometeor., 4, 371386, doi:10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., , Roch M. , , Leduc A.-M. , , Vaillancourt P. A. , , Laroche S. , , and Mailhot J. , 2009: Medium-range quantitative precipitation forecasts from Canada’s new 33-km deterministic global operational system. Wea. Forecasting, 24, 690708, doi:10.1175/2008WAF2222175.1.

    • Search Google Scholar
    • Export Citation
  • Bernier, N. B., , Bélair S. , , Bilodeau B. , , and Tong L. , 2011: Near-surface and land surface forecast system of the Vancouver 2010 Winter Olympic and Paralympic Games. J. Hydrometeor., 12, 508530, doi:10.1175/2011JHM1250.1.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., , van Leeuwen P. J. , , and Evensen G. , 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Calvet, J. C., , and Noilhan J. , 2000: From near-surface to root-zone soil moisture using year-round data. J. Hydrometeor., 1, 393411, doi:10.1175/1525-7541(2000)001<0393:FNSTRZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Calvet, J. C., , Noilhan J. , , and Bessemoulin P. , 1998: Retrieving the root-zone soil moisture from surface soil moisture or temperature estimates: A feasibility study based on field measurements. J. Appl. Meteor., 37, 371386, doi:10.1175/1520-0450(1998)037<0371:RTRZSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Candille, G., 2009: The multiensemble approach: The NAEFS example. Mon. Wea. Rev., 137, 16551665, doi:10.1175/2008MWR2682.1.

  • Candille, G., , and Talagrand O. , 2005: Evaluation of probabilistic prediction systems for a scalar variable. Quart. J. Roy. Meteor. Soc., 131, 21312150, doi:10.1256/qj.04.71.

    • Search Google Scholar
    • Export Citation
  • Candille, G., , and Talagrand O. , 2008: Impact of observational error on the validation of ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 959971, doi:10.1002/qj.268.

    • Search Google Scholar
    • Export Citation
  • Candille, G., , Côté C. , , Houtekamer P. L. , , and Pellerin G. , 2007: Verification of an ensemble prediction system against observations. Mon. Wea. Rev., 135, 26882699, doi:10.1175/MWR3414.1.

    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., , Bélair S. , , Fortin V. , , Bilodeau B. , , Charpentier D. , , and Doré I. , 2010: Evaluation of snowpack simulations over the Canadian Rockies with an experimental hydrometeorological modeling system. J. Hydrometeor., 11, 11231140, doi:10.1175/2010JHM1274.1.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., , and Slater A. G. , 2006: Probabilistic quantitative precipitation estimation in complex terrain. J. Hydrometeor., 7, 322, doi:10.1175/JHM474.1.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and et al. , 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., 2003: Correcting land surface model predictions for the impact of temporally sparse rainfall rate measurements using an ensemble Kalman filter and surface brightness observations. J. Hydrometeor., 4, 960973, doi:10.1175/1525-7541(2003)004<0960:CLSMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., , and Wood E. F. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26, 137149, doi:10.1016/S0309-1708(02)00088-X.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with the inclusion of a layer of vegetation. J. Geophys. Res., 83, 18891903, doi:10.1029/JC083iC04p01889.

    • Search Google Scholar
    • Export Citation
  • de Jeu, R., , Wagner W. , , Holmes T. , , Dolman H. , , van de Giesen N. C. , , and Friesen J. , 2008: Global soil moisture patterns observed by space borne radiometers and scatterometers. Surv. Geophys., 29, 399420, doi:10.1007/s10712-008-9044-0.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., , Reichle R. H. , , Houser P. R. , , Arsenault K. R. , , Verhoest N. E. C. , , and Pauwels V. R. N. , 2010: Satellite-scale snow water equivalent assimilation into a high-resolution land surface model. J. Hydrometeor., 11, 352369, doi:10.1175/2009JHM1192.1.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., , Reichle R. H. , , and Pauwels V. R. N. , 2013: Global calibration of the GEOS-5 L-Band microwave radiative transfer model over nonfrozen land using SMOS observations. J. Hydrometeor., 14, 765785, doi:10.1175/JHM-D-12-092.1.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and et al. , 2009: AMMA Land Surface Model Intercomparison Experiment coupled to the Community Microwave Emission Model: ALMIP–MEM. J. Geophys. Res., 114, D05108, doi:10.1029/2008JD010724.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2010: Relative contribution of soil moisture and snow mass to seasonal climate predictability: A pilot study. Climate Dyn., 34, 797818, doi:10.1007/s00382-008-0508-1.

    • Search Google Scholar
    • Export Citation
  • Draper, C. S., , Mahfouf J.-F. , , and Walker J. P. , 2009: An EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme. J. Geophys. Res., 114, D20104, doi:10.1029/2008JD011650.

    • Search Google Scholar
    • Export Citation
  • Draper, C. S., , Mahfouf J.-F. , , and Walker J. P. , 2011: Root zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture. J. Geophys. Res., 116, D02127, doi:10.1029/2010JD013829.

    • Search Google Scholar
    • Export Citation
  • Draper, C. S., , Reichle R. H. , , De Lannoy G. J. M. , , and Liu Q. , 2012: Assimilation of passive and active microwave soil moisture retrievals. Geophys. Res. Lett., 39, L04401, doi:10.1029/2011GL050655.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., 2007: Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF’s Integrated Forecasting System and the TMI soil moisture data. J. Geophys. Res., 112, D03102, doi:10.1029/2006JD007478.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., , and Viterbo P. , 2007: Assimilation of screen-level variables in ECMWF’s Integrated Forecast System: A study on the impact on the forecast quality and analyzed soil moisture. Mon. Wea. Rev., 135, 300314, doi:10.1175/MWR3309.1.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., , Wood E. F. , , and Simmer C. , 1999: Up-scaling effects in passive microwave remote sensing: ESTAR 1.4 GHz measurements during SGP ’97. Geophys. Res. Lett., 26, 879882, doi:10.1029/1999GL900150.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., , Holmes T. , , de Rosnay P. , , and Balsamo G. , 2009: Comparing ERA-40 based L-band brightness temperatures with Skylab observations: A calibration/validation study using the Community Microwave Emission Model. J. Hydrometeor., 10, 213226, doi:10.1175/2008JHM964.1.

    • Search Google Scholar
    • Export Citation
  • Dunne, S., , and Entekhabi D. , 2005: An ensemble-based reanalysis approach to land data assimilation. Water Resour. Res., 41, W02013, doi:10.1029/2004WR003449.

    • Search Google Scholar
    • Export Citation
  • Dunne, S., , and Entekhabi D. , 2006: Land surface state and flux estimation using the ensemble Kalman smoother during the Southern Great Plains 1997 field experiment. Water Resour. Res., 42, W01407, doi:10.1029/2005WR004334.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., , Reichle R. H. , , Koster R. D. , , and Crow W. T. , 2010a: Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeor., 11, 832840, doi:10.1175/2010JHM1223.1.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and et al. , 2010b: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Forman, B. A., , and Margulis S. A. , 2010: Assimilation of multiresolution radiation products into a downwelling surface radiation model: 1. Prior ensemble implementation. J. Geophys. Res., 115, D22115, doi:10.1029/2010JD013920.

    • Search Google Scholar
    • Export Citation
  • Gao, X., , Dirmeyer P. A. , , Guo Z. , , and Zhao M. , 2008: Sensitivity of land surface simulations to the treatment of vegetation properties and the implications for seasonal climate prediction. J. Hydrometeor., 9, 348366, doi:10.1175/2007JHM931.1.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., , Meng J. , , Rodell M. , , and Houser P. , 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states. J. Hydrometeor., 6, 573598, doi:10.1175/JHM437.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, doi:10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , and Colucci S. J. , 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 13121327, doi:10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., , and Lönnberg P. L. , 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111136, doi:10.1111/j.1600-0870.1986.tb00460.x.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2005: Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture. Adv. Water Resour., 28, 13361350, doi:10.1016/j.advwatres.2005.03.013.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., , Deng X. , , Mitchell H. L. , , Baek S.-J. , , and Gagnon N. , 2014: Higher resolution in an operational ensemble Kalman filter. Mon. Wea. Rev., 142, 11431162, doi:10.1175/MWR-D-13-00138.1.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and et al. , 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, 666687, doi:10.1109/JPROC.2010.2043032.

    • Search Google Scholar
    • Export Citation
  • Kirdyashev, K. P., , Chukhlantsev A. A. , , and Shutko A. M. , 1979: Microwave radiation of the earth’s surface in the presence of vegetation cover. Radiotekh. Elektron.,24, 256264.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 10491063, doi:10.1175/JHM-387.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., , Reichle R. H. , , Peters-Lidard D. D. , , Koster R. D. , , Zhan X. , , Crow W. T. , , Eylander J. B. , , and Houser P. R. , 2008: A land surface data assimilation framework using the land information system: Description and applications. Adv. Water Resour., 31, 14191432, doi:10.1016/j.advwatres.2008.01.013.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., , Reichle R. H. , , Harrison K. W. , , Peters-Lidard C. D. , , Yatheendradas S. , , and Santanello J. A. , 2012: A comparison of methods for a prior bias correction in soil moisture data assimilation. Water Resour. Res., 48, W03515, doi:10.1029/2010WR010261.

    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., , Carrera M. , , Bélair S. , , Gagnon N. , , Frenette R. , , Charron M. , , and Yau M. K. , 2013: Impact of surface parameter uncertainties with the Canadian Regional Ensemble Prediction System. Mon. Wea. Rev., 141, 15061526, doi:10.1175/MWR-D-11-00354.1.

    • Search Google Scholar
    • Export Citation
  • Leroux, A., , Gauthier J.-P. , , Lemonsu A. , , Bélair S. , , and Mailhot J. , 2009: Automated urban land use and land cover classification for mesoscale atmospheric modeling over Canadian cities. Geomatica, 63, 1324.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., and et al. , 2011: The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system. J. Hydrometeor., 12, 750765, doi:10.1175/JHM-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Magagi, R., and et al. , 2013: Canadian Experiment for Soil Moisture in 2010 (CanEX-SM10): Overview and preliminary results. IEEE Trans. Geosci. Remote Sens., 51, 347363, doi:10.1109/TGRS.2012.2198920.

    • Search Google Scholar
    • Export Citation
  • Maggioni, V., , Reichle R. H. , , and Anagnostou E. N. , 2011: The effect of satellite rainfall error modeling on soil moisture prediction uncertainty. J. Hydrometeor., 12, 413428, doi:10.1175/2011JHM1355.1.

    • Search Google Scholar
    • Export Citation
  • Maggioni, V., , Anagnostou E. N. , , and Reichle R. H. , 2012a: The impact of model and rainfall forcing errors on characterizing soil moisture uncertainty in land surface modeling. Hydrol. Earth Syst. Sci., 16, 34993515, doi:10.5194/hess-16-3499-2012.

    • Search Google Scholar
    • Export Citation
  • Maggioni, V., , Reichle R. H. , , and Anagnostou E. N. , 2012b: The impact of rainfall error characterization on the estimation of soil moisture fields in a land data assimilation system. J. Hydrometeor., 13, 11071118, doi:10.1175/JHM-D-11-0115.1.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., 2010: Assimilation of satellite-derived soil moisture from ASCAT in a limited-area NWP model. Quart. J. Roy. Meteor. Soc., 136, 784798, doi:10.1002/qj.602.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., , Brasnett B. , , and Gagnon S. , 2007: A Canadian Precipitation Analysis (CaPA) Project: Description and preliminary results. Atmos.–Ocean, 45, 117, doi:10.3137/ao.450101.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., , Bergaoui K. , , Draper C. , , Bouyssel F. , , Taillefer F. , , and Taseva L. , 2009: A comparison of two off-line soil moisture analysis schemes for assimilation of screen level observations. J. Geophys. Res., 114, D08105, doi:10.1029/2008JD011077.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and et al. , 2006: The 15-km version of the Canadian Regional Forecast System. Atmos.–Ocean, 44, 133149, doi:10.3137/ao.440202.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and et al. , 2010: Environment Canada’s experimental numerical weather prediction systems for the Vancouver 2010 Winter Olympic and Paralympic games. Bull. Amer. Meteor. Soc., 91, 10731085, doi:10.1175/2010BAMS2913.1.

    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., , McLaughlin D. , , Entekhabi D. , , and Dunne S. , 2002: Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment. Water Resour. Res., 38, 1299, doi:10.1029/2001WR001114.

    • Search Google Scholar
    • Export Citation
  • Masson, V., and et al. , 2013: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, doi:10.5194/gmd-6-929-2013.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and et al. , 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD00382.

    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., , Hsu K. , , Hong Y. , , and Sarooshian S. , 2006: Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting. Geophys. Res. Lett., 33, L12401, doi:10.1029/2006GL026855.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and Lacarrère P. , 1995: GCM grid-scale evaporation from mesoscale modeling. J. Climate, 8, 206223, doi:10.1175/1520-0442(1995)008<0206:GGSEFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and Mahfouf J.-F. , 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13, 145159, doi:10.1016/0921-8181(95)00043-7.

    • Search Google Scholar
    • Export Citation
  • Pan, M., , and Wood E. F. , 2009: A multiscale ensemble filtering system for hydrologic data assimilation. Part II: Application to land surface modeling with satellite rainfall forcing. J. Hydrometeor., 10, 14931506, doi:10.1175/2009JHM1155.1.

    • Search Google Scholar
    • Export Citation
  • Pannatier, Y., 1996: Variowin: Software for Spatial Statistics: Analysis in 2D. Springer-Verlag, 91 pp.

  • Parrens, M., , Calvet J.-C. , , de Rosnay P. , , and Decharme B. , 2014a: Benchmarking of L-band soil microwave emission models. Remote Sens. Environ., 140, 407419, doi:10.1016/j.rse.2013.09.017.

    • Search Google Scholar
    • Export Citation
  • Parrens, M., , Mahfouf J.-F. , , Barbu A. L. , , and Calvet J.-C. , 2014b: Assimilation of surface soil moisture into a multilayer soil model: Design and evaluation at local scale. Hydrol. Earth Syst. Sci., 18, 673689, doi:10.5194/hess-18-673-2014.

    • Search Google Scholar
    • Export Citation
  • Pulliainen, J. T., , Hallikainen M. T. , , and Grandell J. , 1999: HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Trans. Geosci. Remote Sens., 37, 13781390, doi:10.1109/36.763302.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., 2008: Data assimilation method in the Earth Sciences. Adv. Water Resour., 31, 14111418, doi:10.1016/j.advwatres.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , and Koster R. D. , 2002: Land data assimilation with the ensemble Kalman filter: Assessing model error parameters using innovations. Computational Methods in Water Resources, S. M. Hassanizadeh et al., Eds., Developments in Water Science, Vol. 47, Elsevier, 13871394.

  • Reichle, R. H., , and Koster R. D. , 2003: Assessing the impact of horizontal error correlations in background fields on soil moisture estimation. J. Hydrometeor., 4, 12291242, doi:10.1175/1525-7541(2003)004<1229:ATIOHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , Entekhabi D. , , and McLaughlin D. B. , 2001: Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach. Water Resour. Res., 37, 23532364, doi:10.1029/2001WR000475.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , McLaughlin D. , , and Entekhabi D. , 2002a: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130, 103114, doi:10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , Walker J. P. , , Koster R. D. , , and Houser P. R. , 2002b: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor., 3, 728740, doi:10.1175/1525-7541(2002)003<0728:EVEKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and et al. , 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Sabater, J. M., , Jarlan L. , , Calvet J.-C. , , Bouyssel F. , , and de Rosnay P. , 2007: From near-surface to root-zone soil moisture using different assimilation techniques. J. Hydrometeor., 8, 194206, doi:10.1175/JHM571.1.

    • Search Google Scholar
    • Export Citation
  • Sabater, J. M., , de Rosnay P. , , and Balsamo G. , 2011: Sensitivity of L-band NWP forward modeling to soil roughness. Int. J. Remote Sens., 32, 56075620, doi:10.1080/01431161.2010.507260.

    • Search Google Scholar
    • Export Citation
  • Schmugge, T. J., , and Choudhury B. J. , 1981: A comparison of radiative transfer models for predicting the microwave emission from soil. Radio Sci., 16, 927938, doi:10.1029/RS016i005p00927.

    • Search Google Scholar
    • Export Citation
  • Scipal, K., , Drusch M. , , and Wagner W. , 2008: Assimilation of a ERS scatterometer derived soil moisture index in the ECMWF numerical weather prediction system. Adv. Water Resour., 31, 11011112, doi:10.1016/j.advwatres.2008.04.013.

    • Search Google Scholar
    • Export Citation
  • Seuffert, G., , Wilker H. , , Viterbo P. , , Drusch M. , , and Mahfouf J. F. , 2004: The usage of screen-level parameters and microwave brightness temperature for soil moisture analysis. J. Hydrometeor., 5, 516531, doi:10.1175/1525-7541(2004)005<0516:TUOSPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., , and Clark M. , 2006: Snow data assimilation via an ensemble Kalman filter. J. Hydrometeor., 7, 478493, doi:10.1175/JHM505.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J. R., , and Schmugge T. , 1980: An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens., 18, 288295, doi:10.1109/TGRS.1980.350304.

    • Search Google Scholar
    • Export Citation
  • Wigneron, J. P., , Olioso A. , , Calvet J. C. , , and Bertuzzi P. , 1999: Estimating root zone soil moisture from surface soil moisture data and soil–vegetation–atmosphere transfer modeling. Water Resour. Res., 35, 37353745, doi:10.1029/1999WR900258.

    • Search Google Scholar
    • Export Citation
  • Wigneron, J. P., , Laguerre L. , , and Kerr Y. H. , 2001: A simple parameterization of the L-band microwave emission from rough agricultural soils. IEEE Trans. Geosci. Remote Sens., 39, 16971707, doi:10.1109/36.942548.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., , McLaughlin D. , , and Entekhabi D. , 2006: Assessing the performance of the ensemble Kalman filter for land surface data assimilation. Mon. Wea. Rev., 134, 21282142, doi:10.1175/MWR3153.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 162 21
PDF Downloads 100 100 14

The Canadian Land Data Assimilation System (CaLDAS): Description and Synthetic Evaluation Study

View More View Less
  • 1 Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada
© Get Permissions
Restricted access

Abstract

The Canadian Land Data Assimilation System (CaLDAS) has been developed at the Meteorological Research Division of Environment Canada (EC) to better represent the land surface initial states in environmental prediction and assimilation systems. CaLDAS is built around an external land surface modeling system and uses the ensemble Kalman filter (EnKF) methodology. A unique feature of CaLDAS is the use of improved precipitation forcing through the assimilation of precipitation observations. An ensemble of precipitation analyses is generated by combining numerical weather prediction (NWP) model precipitation forecasts with precipitation observations. Spatial phasing errors to the NWP first-guess precipitation forecasts are more effective than perturbations to the precipitation observations in decreasing (increasing) the exceedance ratio (uncertainty ratio) scores and generating flatter, more reliable ranked histograms. CaLDAS has been configured to assimilate L-band microwave brightness temperature TB by coupling the land surface model with a microwave radiative transfer model. A continental-scale synthetic experiment assimilating passive L-band TBs for an entire warm season is performed over North America. Ensemble metric scores are used to quantify the impact of different atmospheric forcing uncertainties on soil moisture and TB ensemble spread. The use of an ensemble of precipitation analyses, generated by assimilating precipitation observations, as forcing combined with the assimilation of L-band TBs gave rise to the largest improvements in superficial soil moisture scores and to a more rapid reduction of the root-zone soil moisture errors. Innovation diagnostics show that the EnKF is able to maintain a sufficient forecast error spread through time, while soil moisture estimation error improvements with increasing ensemble size were limited.

Corresponding author address: Marco L. Carrera, Meteorological Research Division, Environment Canada, Canadian Meteorological Centre, 5th Floor, 2121 Trans-Canada Highway, Dorval, QC H9P 1J3, Canada. E-mail: marco.carrera@ec.gc.ca

This article is included in the NASA Soil Moisture Active Passive (SMAP) – Pre-launch Applied Research Special Collection.

Abstract

The Canadian Land Data Assimilation System (CaLDAS) has been developed at the Meteorological Research Division of Environment Canada (EC) to better represent the land surface initial states in environmental prediction and assimilation systems. CaLDAS is built around an external land surface modeling system and uses the ensemble Kalman filter (EnKF) methodology. A unique feature of CaLDAS is the use of improved precipitation forcing through the assimilation of precipitation observations. An ensemble of precipitation analyses is generated by combining numerical weather prediction (NWP) model precipitation forecasts with precipitation observations. Spatial phasing errors to the NWP first-guess precipitation forecasts are more effective than perturbations to the precipitation observations in decreasing (increasing) the exceedance ratio (uncertainty ratio) scores and generating flatter, more reliable ranked histograms. CaLDAS has been configured to assimilate L-band microwave brightness temperature TB by coupling the land surface model with a microwave radiative transfer model. A continental-scale synthetic experiment assimilating passive L-band TBs for an entire warm season is performed over North America. Ensemble metric scores are used to quantify the impact of different atmospheric forcing uncertainties on soil moisture and TB ensemble spread. The use of an ensemble of precipitation analyses, generated by assimilating precipitation observations, as forcing combined with the assimilation of L-band TBs gave rise to the largest improvements in superficial soil moisture scores and to a more rapid reduction of the root-zone soil moisture errors. Innovation diagnostics show that the EnKF is able to maintain a sufficient forecast error spread through time, while soil moisture estimation error improvements with increasing ensemble size were limited.

Corresponding author address: Marco L. Carrera, Meteorological Research Division, Environment Canada, Canadian Meteorological Centre, 5th Floor, 2121 Trans-Canada Highway, Dorval, QC H9P 1J3, Canada. E-mail: marco.carrera@ec.gc.ca

This article is included in the NASA Soil Moisture Active Passive (SMAP) – Pre-launch Applied Research Special Collection.

Save