• Beniston, M., 2003: Climatic change in mountain regions: A review of possible impacts. Climatic Change, 59, 531, doi:10.1023/A:1024458411589.

    • Search Google Scholar
    • Export Citation
  • Bidin, K., , and Chappell N. A. , 2006: Characteristics of rain events at an inland locality in northeastern Borneo, Malaysia. Hydrol. Processes, 20, 38353850, doi:10.1002/hyp.6160.

    • Search Google Scholar
    • Export Citation
  • Buytaert, W., , and Beven K. , 2011: Models as multiple working hypotheses: Hydrological simulation of tropical alpine wetlands. Hydrol. Processes, 25, 17841799, doi:10.1002/hyp.7936.

    • Search Google Scholar
    • Export Citation
  • Buytaert, W., , Célleri R. , , De Bièvre B. , , Cisneros F. , , Wyseure G. , , Deckers J. , , and Hofstede R. , 2006a: Human impact on the hydrology of the Andean páramos. Earth Sci. Rev., 79, 5372, doi:10.1016/j.earscirev.2006.06.002.

    • Search Google Scholar
    • Export Citation
  • Buytaert, W., , Célleri R. , , Willems P. , , De Bièvre B. , , and Wyseure G. , 2006b: Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol., 329, 413421, doi:10.1016/j.jhydrol.2006.02.031.

    • Search Google Scholar
    • Export Citation
  • Buytaert, W., , Iñiguez V. , , and De Bièvre B. , 2007: The effects of afforestation and cultivation on water yield in the Andean páramo. For. Ecol. Manage., 251, 2230, doi:10.1016/j.foreco.2007.06.035.

    • Search Google Scholar
    • Export Citation
  • Buytaert, W., , Cuesta-Camacho F. , , and Tobón C. , 2011: Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecol. Biogeogr., 20, 1933, doi:10.1111/j.1466-8238.2010.00585.x.

    • Search Google Scholar
    • Export Citation
  • Caracciolo, C., , Prodi F. , , and Uijlenhoet R. , 2006: Comparison between Pludix and impact/optical disdrometers during rainfall measurement campaigns. Atmos. Res., 82, 137163, doi:10.1016/j.atmosres.2005.09.007.

    • Search Google Scholar
    • Export Citation
  • Célleri, R., 2007: Rainfall variability and rainfall–runoff dynamics in the Paute River basin–southern Ecuadorian Andes. Ph.D. thesis, Katholieke Universiteit Leuven, 141 pp.

  • Célleri, R., , and Feyen J. , 2009: The hydrology of tropical Andean ecosystems: Importance, knowledge status, and perspectives. Mt. Res. Dev., 29, 350355, doi:10.1659/mrd.00007.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20, 752759, doi:10.1175/1520-0426(2003)20<752:LREITB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crespo, P., , Feyen J. , , Buytaert W. , , Célleri R. , , Frede H.-G. , , Ramírez M. , , and Breuer L. , 2012: Development of a conceptual model of the hydrologic response of tropical Andean micro-catchments in Southern Ecuador. Hydrol. Earth Syst. Sci. Discuss., 9, 24752510, doi:10.5194/hessd-9-2475-2012.

    • Search Google Scholar
    • Export Citation
  • Cuesta, F., , and Becerra M. T. , 2009: Atlas de los Andes del norte y centro. Secretaría General de la Comunidad Andina, Lima, Peru, 100 pp. [Available online at www.condesan.org/portal/sites/default/files/publicaciones/archivos/atlas_andes.pdf.]

  • Emck, P., 2007: A climatology of south Ecuador. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 275 pp.

  • Frasson, R. P. D. M., , da Cunha L. K. , , and Krajewski W. F. , 2011: Assessment of the Thies optical disdrometer performance. Atmos. Res., 101, 237255, doi:10.1016/j.atmosres.2011.02.014.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., , and Kinzer G. D. , 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Habib, E., , Krajewski W. F. , , and Kruger A. , 2001: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6, 159166, doi:10.1061/(ASCE)1084-0699(2001)6:2(159).

    • Search Google Scholar
    • Export Citation
  • Hofstede, R., , Segarra P. , , and Mena P. , 2003: Los páramos del mundo. Global Peatland Initiative/NC-IUCN/EcoCiencia, Quito, Ecuador, 85 pp.

  • Humphrey, M. D., , Istok J. D. , , Lee J. Y. , , Hevesi J. A. , , and Flint A. L. , 1997: A new method for automated dynamic calibration of tipping-bucket rain gauges. J. Atmos. Oceanic Technol., 14, 15131519, doi:10.1175/1520-0426(1997)014<1513:ANMFAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killeen, T. J., , Douglas M. , , Consiglio T. , , Jorgensen P. M. , , and Mejia J. , 2007: Dry spots and wet spots in the Andean hotspot. J. Biogeogr., 34, 13571373, doi:10.1111/j.1365-2699.2006.01682.x.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and et al. , 2006: DEVEX-disdrometer evaluation experiment: Basic results and implications for hydrologic studies. Adv. Water Resour., 29, 311325, doi:10.1016/j.advwatres.2005.03.018.

    • Search Google Scholar
    • Export Citation
  • Lanza, L. G., , and Vuerich E. , 2009: The WMO field intercomparison of rain intensity gauges. Atmos. Res., 94, 534543, doi:10.1016/j.atmosres.2009.06.012.

    • Search Google Scholar
    • Export Citation
  • Lanzinger, E., , Theel M. , , and Windolph H. , 2006: Rainfall amount and intensity measured by the Thies laser precipitation monitor. WMO Technical Conf. on Meteorological and Environmental Instruments and Methods of Observation, 2006, Geneva, Switzerland, WMO, 9 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-94-TECO2006/3%283%29_Lanzinger_Germany.pdf.]

  • Linsley, R., , Kholer M. , , and Paulus J. , 1975: Hydrology for Engineers. 2nd ed. McGraw-Hill, 482 pp.

  • Loffler-Mang, M., , and Joss J. , 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, doi:10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luteyn, J. L., 1999: Páramos: A Checklist of Plant Diversity, Geographical Distribution, and Botanical Literature. New York Botanical Garden Press, 278 pp.

  • McCabe, G. J., , Legates D. R. , , and Lins H. F. , 2010: Variability and trends in dry day frequency and dry event length in the southwestern United States. J. Geophys. Res., 115, D07108, doi:10.1029/2009JD012866.

    • Search Google Scholar
    • Export Citation
  • Molini, A., , Lanza L. G. , , and La Barbera P. , 2005: Improving the accuracy of tipping-bucket rain records using disaggregation techniques. Atmos. Res., 77, 203217, doi:10.1016/j.atmosres.2004.12.013.

    • Search Google Scholar
    • Export Citation
  • Mosquera, G. M., , Lazo P. X. , , Célleri R. , , Wilcox B. P. , , and Crespo P. , 2015: Runoff from tropical alpine grasslands increases with areal extent of wetlands. Catena, 125, 120128, doi:10.1016/j.catena.2014.10.010.

    • Search Google Scholar
    • Export Citation
  • Nakano, M., , Kanada S. , , Kato T. , , and Kurihara K. , 2011: Monthly maximum number of consecutive dry days in Japan and its reproducibility by a 5-km-mesh cloud-system resolving regional climate model. Hydrol. Res. Lett., 5, 1115, doi:10.3178/hrl.5.11.

    • Search Google Scholar
    • Export Citation
  • Nešpor, V., , and Sevruk B. , 1999: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Oceanic Technol., 16, 450464, doi:10.1175/1520-0426(1999)016<0450:EOWIEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nešpor, V., , Krajewski W. F. , , and Kruger A. , 2000: Wind-induced error of raindrop size distribution measurement using a two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 17, 14831492, doi:10.1175/1520-0426(2000)017<1483:WIEORS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nystuen, J. A., 1999: Relative performance of automatic rain gauges under different rainfall conditions. J. Atmos. Oceanic Technol., 16, 10251043, doi:10.1175/1520-0426(1999)016<1025:RPOARG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Padrón, R. S., 2013: Análisis de la Estructura de la Lluvia del Páramo. B.S. thesis, Facultad de Ingeniería Escuela de Civil, Universidad de Cuenca, 81 pp. [Available online at http://dspace.ucuenca.edu.ec/bitstream/123456789/519/1/TESIS.pdf.]

  • Rollenbeck, R., , and Bendix J. , 2011: Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos. Res., 99, 277289, doi:10.1016/j.atmosres.2010.10.018.

    • Search Google Scholar
    • Export Citation
  • Rollenbeck, R., , Bendix J. , , Fabian P. , , Boy J. , , Dalitz H. , , Emck P. , , Oesker M. , , and Wilcke W. , 2007: Comparison of different techniques for the measurement of precipitation in tropical montane rain forest regions. J. Atmos. Oceanic Technol., 24, 156168, doi:10.1175/JTECH1970.1.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., , and Hamon W. R. , 1984: International comparison of national precipitation gauges with a reference pit gauge. IOM Rep. 17, WMO/TD 38, WMO, Geneva, Switzerland, 20 pp.

  • Sevruk, B., , Ondrás M. , , and Chvíla B. , 2009: The WMO precipitation measurement intercomparisons. Atmos. Res., 92, 376380, doi:10.1016/j.atmosres.2009.01.016.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , Wolff D. B. , , Wolff K. R. , , and Bashor P. G. , 2003: Rain gauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20, 14601477, doi:10.1175/1520-0426(2003)020<1460:RGADMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , Bashor P. G. , , and McDowell V. L. , 2010: Comparison of rain gauge measurements in the mid-Atlantic region. J. Hydrometeor., 11, 553565, doi:10.1175/2009JHM1137.1.

    • Search Google Scholar
    • Export Citation
  • Upton, G., , and Brawn D. , 2008: An investigation of factors affecting the accuracy of Thies disdrometers. WMO Technical Conf. on Meteorological and Environmental Instruments and Methods of Observation, 2008, St. Petersburg, Russia, WMO, 9 pp. [Available online at www.moc.cma.gov.cn/mocdoc/2008/TECH-2008/2(10)_Upton_United_Kingdom.pdf.]

  • Vasvári, V., 2005: Calibration of tipping bucket rain gauges in the Graz urban research area. Atmos. Res., 77, 1828, doi:10.1016/j.atmosres.2004.12.012.

    • Search Google Scholar
    • Export Citation
  • Viviroli, D., , Dürr H. H. , , Messerli B. , , Meybeck M. , , and Weingartner R. , 2007: Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, W07447, doi:10.1029/2006WR005653.

    • Search Google Scholar
    • Export Citation
  • Viviroli, D., and et al. , 2011: Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci., 15, 471504, doi:10.5194/hess-15-471-2011.

    • Search Google Scholar
    • Export Citation
  • Vuerich, E., , Monesi C. , , Lanza L. G. , , Stagi L. , , and Lanzinger E. , 2009: WMO Field intercomparison of rainfall intensity gauges. IOM Rep. 99., WMO/TD 1504, Geneva, Switzerland, 290 pp.

  • Vuille, M., , Bradley R. S. , , and Keimig F. , 2000: Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J. Climate, 13, 25202535, doi:10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , Fisher B. L. , , and Wolff D. B. , 2008: Estimating rain rates from tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 25, 4356, doi:10.1175/2007JTECHA895.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Guide of meteorological instruments and methods of observation. WMO-8, 681 pp.

  • Wohl, E., and et al. , 2012: The hydrology of the humid tropics. Nat. Climate Change, 2, 655662, doi:10.1038/nclimate1556.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 157 28
PDF Downloads 145 145 29

Rainfall in the Andean Páramo: New Insights from High-Resolution Monitoring in Southern Ecuador

View More View Less
  • 1 Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador
  • | 2 Ecosystem Science and Management, Texas A&M University, College Station, Texas
  • | 3 Departamento de Recursos Hídricos y Ciencias Ambientales, and Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca, Ecuador
© Get Permissions
Restricted access

Abstract

In mountainous regions, rainfall plays a key role in water supply for millions of people. However, rainfall data for these sites are limited and generally of low quality, making it difficult to evaluate the nature, amount, and timing of rainfall. This is particularly true for the páramo, a high-elevation grassland in the northern Andes that is a primary source of water for large populations in Ecuador, Colombia, and Venezuela. In this study, high-resolution laser disdrometer data and standard tipping-bucket rain gauge data were used to improve knowledge of rainfall in the páramo. For 36 months, rainfall was monitored in a high-elevation (3780 m MSL) headwater catchment in southern Ecuador. Average annual rainfall during this period was 1345 mm. Results indicate that (i) when input from very low–intensity events (drizzle) is taken into account, rainfall is 15% higher than previously thought; (ii) rainfall occurs throughout the year (only approximately 12% of the days are dry); (iii) rainfall occurs primarily as drizzle (80% of rainfall duration), which accounts for 29% of total rainfall amount; and (iv) the timing and average intensity of rainfall varies throughout the year (shorter afternoon events are common from October to May, whereas longer night events—with lower intensities—are more frequent from June to September). Although some of these numbers may vary regionally, the results contribute to a better understanding of rainfall in the wet Andean páramo.

Corresponding author address: Ryan S. Padrón, Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Av. 12 de Abril s/n, 010201 Cuenca, Ecuador. E-mail: ryan.padron@gmail.com

Abstract

In mountainous regions, rainfall plays a key role in water supply for millions of people. However, rainfall data for these sites are limited and generally of low quality, making it difficult to evaluate the nature, amount, and timing of rainfall. This is particularly true for the páramo, a high-elevation grassland in the northern Andes that is a primary source of water for large populations in Ecuador, Colombia, and Venezuela. In this study, high-resolution laser disdrometer data and standard tipping-bucket rain gauge data were used to improve knowledge of rainfall in the páramo. For 36 months, rainfall was monitored in a high-elevation (3780 m MSL) headwater catchment in southern Ecuador. Average annual rainfall during this period was 1345 mm. Results indicate that (i) when input from very low–intensity events (drizzle) is taken into account, rainfall is 15% higher than previously thought; (ii) rainfall occurs throughout the year (only approximately 12% of the days are dry); (iii) rainfall occurs primarily as drizzle (80% of rainfall duration), which accounts for 29% of total rainfall amount; and (iv) the timing and average intensity of rainfall varies throughout the year (shorter afternoon events are common from October to May, whereas longer night events—with lower intensities—are more frequent from June to September). Although some of these numbers may vary regionally, the results contribute to a better understanding of rainfall in the wet Andean páramo.

Corresponding author address: Ryan S. Padrón, Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Av. 12 de Abril s/n, 010201 Cuenca, Ecuador. E-mail: ryan.padron@gmail.com
Save