• Bao, J.-W., , Michelson S. A. , , Neiman P. J. , , Ralph F. M. , , and Wilczak J. M. , 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical water vapor. Mon. Wea. Rev., 134, 10631080, doi:10.1175/MWR3123.1.

    • Search Google Scholar
    • Export Citation
  • Barras, V., , and Simmonds I. , 2009: Observation and modeling of stable water isotopes as diagnostics of rainfall dynamics over southeastern Australia. J. Geophys. Res., 114, D23308, doi:10.1029/2009JD012132.

    • Search Google Scholar
    • Export Citation
  • Bernard, E., , Naveau P. , , Vrac M. , , and Mestre O. , 2013: Clustering of maxima: Spatial dependencies among heavy rainfall in France. J. Climate, 26, 79297937, doi:10.1175/JCLI-D-12-00836.1.

    • Search Google Scholar
    • Export Citation
  • Bernhardt, D., 2006: Glacier National Park flooding November 2006. NWS Western Region Tech. Attachment 08-23, 15 pp.

  • Daly, C., , Neilson R. P. , , and Phillips D. L. , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., , Ralph F. M. , , Das T. , , Neiman P. J. , , and Cayan D. , 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Durre, I., , Menne M. J. , , and Vose R. S. , 2008: Strategies for evaluating quality assurance procedures. J. Appl. Meteor. Climatol., 47, 17851791, doi:10.1175/2007JAMC1706.1.

    • Search Google Scholar
    • Export Citation
  • Durre, I., , Menne M. J. , , Gleason B. E. , , Houston T. G. , , and Vose R. S. , 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, doi:10.1175/2010JAMC2375.1.

    • Search Google Scholar
    • Export Citation
  • Fuhrmann, C. M., , and Konrad C. E. , 2013: A trajectory approach to analyzing the ingredients associated with heavy winter storms in central North Carolina. Wea. Forecasting, 28, 647667, doi:10.1175/WAF-D-12-00079.1.

    • Search Google Scholar
    • Export Citation
  • Gaberšek, S., , and Durran D. R. , 2006: Gap flows through idealized topography. Part II: Effects of rotation and surface friction. J. Atmos. Sci., 63, 27202739, doi:10.1175/JAS3786.1.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., , Jolliffe I. T. , , and Stephenson D. B. , 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, doi:10.1002/joc.1499.

    • Search Google Scholar
    • Export Citation
  • Hughes, M., , Mahoney K. M. , , Neiman P. J. , , Moore B. J. , , Alexander M. , , and Ralph F. M. , 2014: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. J. Hydrometeor.,15, 1954–1974, doi:10.1175/JHM-D-13-0176.1.

  • Knippertz, P., , and Martin J. E. , 2007: A Pacific moisture conveyor belt and its relationship to a significant precipitation event in the semiarid southwestern United States. Wea. Forecasting, 22, 125144, doi:10.1175/WAF963.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., , and Wernli H. , 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, doi:10.1175/2009JCLI3333.1.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., 1994: Moisture trajectories associated with heavy rainfall in the Appalachian region of the United States. Phys. Geogr., 15, 227248, doi:10.1080/02723646.1994.10642514.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., , and Gyakum J. R. , 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14, 687700, doi:10.1175/1520-0434(1999)014<0687:HCSPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., , and Qian Y. , 2009: Atmospheric rivers induced heavy precipitation and flooding in the western US simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, doi:10.1029/2008GL036445.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., , Rosenberg E. A. , , Lin C. , , Nijssen B. , , Mishra V. , , Andreadis K. M. , , Maurer E. P. , , and Lettenmaier D. P. , 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1980: Winter storms over the San Juan Mountains. Part I: Dynamical processes. J. Appl. Meteor., 19, 913926, doi:10.1175/1520-0450(1980)019<0913:WSOTSJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , Wood A. W. , , Adam J. C. , , Lettenmaier D. P. , , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGuirk, J. P., , Thompson A. H. , , and Smith N. R. , 1987: Moisture bursts over the tropical Pacific Ocean. Mon. Wea. Rev., 115, 787798, doi:10.1175/1520-0493(1987)115<0787:MBOTTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGuirk, J. P., , Thompson A. H. , , and Schaefer J. R. , 1988: An eastern Pacific tropical plume. Mon. Wea. Rev., 116, 25052521, doi:10.1175/1520-0493(1988)116<2505:AEPTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., , Durre I. , , Vose R. S. , , Gleason B. E. , , and Houston T. G. , 2012: An overview of the Global Historical Climatology Network–Daily Database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Ralph F. M. , , White A. B. , , Kingsmill D. E. , , and Persson P. O. G. , 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, doi:10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Ralph F. M. , , Wick G. A. , , Lundquist J. D. , , and Dettinger M. D. , 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Schick L. J. , , Ralph F. M. , , Hughes M. , , and Wick G. A. , 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , Ralph F. M. , , Moore B. J. , , Hughes M. , , Mahoney K. M. , , Cordeira J. M. , , and Dettinger M. D. , 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, doi:10.1175/JHM-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., , Newell N. E. , , and Scott C. , 1992: Tropospheric rivers? A pilot study. Geophys. Res. Lett., 19, 24012404, doi:10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • Newman, M., , Kiladis G. N. , , Weickmann K. M. , , Ralph F. M. , , and Sardeshmukh P. D. , 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417361, doi:10.1175/JCLI-D-11-00665.1.

    • Search Google Scholar
    • Export Citation
  • Noone, D., , and Simmonds I. , 1999: A three-dimensional spherical trajectory algorithm. Research activities in atmospheric and oceanic modelling, Rep. 28, WMO/TD-942, H. Ritchie, Ed., World Meteorological Organization, 3.26–3.27.

  • O’Hara, B. F., , Kaplan M. L. , , and Underwood S. J. , 2009: Synoptic climatological analyses of extreme snowfalls in the Sierra Nevada. Wea. Forecasting, 24, 16101624, doi:10.1175/2009WAF2222249.1.

    • Search Google Scholar
    • Export Citation
  • Pandey, G. R., , Cayan D. R. , , and Georgakakos K. P. , 1999: Precipitation structure in the Sierra Nevada of California during winter. J. Geophys. Res., 104, 12 01912 030, doi:10.1029/1999JD900103.

    • Search Google Scholar
    • Export Citation
  • Perry, L. B., , Konrad C. E. , , and Schmidlin T. W. , 2007: Antecedent upstream air trajectories associated with northwest flow snowfall in the southern Appalachians. Wea. Forecasting, 22, 334352, doi:10.1175/WAF978.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , and Dettinger M. D. , 2011: Storms, floods and the science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 92, 265266, doi:10.1029/2011EO320001.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , Neiman P. J. , , Wick G. A. , , Gutman S. I. , , Dettinger M. D. , , Cayan D. R. , , and White A. B. , 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Rivera, E. R., , Dominguez F. , , and Castro C. L. , 2014: Atmospheric rivers and extreme cool season precipitation events in the Verde River basin of Arizona. J. Hydrometeor., 15, 813829, doi:10.1175/JHM-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Roberge, A., , Gyakum J. R. , , and Atallah E. H. , 2009: Analysis of intense poleward water vapor transports into high latitudes of western North America. Wea. Forecasting, 24, 17321747, doi:10.1175/2009WAF2222198.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., , and Steenburgh W. J. , 2012: Quantifying the role of atmospheric rivers in the interior western United States. Atmos. Sci. Lett., 13, 257261, doi:10.1002/asl.392.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., , Steenburgh W. J. , , and Ralph F. M. , 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and et al. , 2002: Understanding Utah winter storms: The Intermountain Precipitation Experiment. Bull. Amer. Meteor. Soc., 83, 189210, doi:10.1175/1520-0477(2002)083<0189:UUWSTI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. A., , and Kummerow C. D. , 2013: A comparison of in situ, reanalysis, and satellite water budgets over the upper Colorado River basin. J. Hydrometeor., 14, 888905, doi:10.1175/JHM-D-12-0119.1.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., 2003: One hundred inches in one hundred hours: Evolution of a Wasatch Mountain winter storm cycle. Wea. Forecasting, 18, 10181036, doi:10.1175/1520-0434(2003)018<1018:OHIIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., , Halvorson S. F. , , and Onton D. J. , 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709727, doi:10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., , and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 79 33
PDF Downloads 55 55 20

Moisture Pathways into the U.S. Intermountain West Associated with Heavy Winter Precipitation Events

View More View Less
  • 1 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 2 NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Two methods were used to identify the paths of moisture transport that reach the U.S. Intermountain West (IMW) during heavy precipitation events in winter. In the first, the top 150 precipitation events at stations located within six regions in the IMW were identified, and then back trajectories were initiated at 6-h intervals on those days at the four Climate Forecast System Reanalysis grid points nearest the stations. The second method identified the leading patterns of integrated water vapor transport (IVT) using the three leading empirical orthogonal functions of IVT over land that were first normalized by the local standard deviation. The top 1% of the associated 6-hourly time series was used to construct composites of IVT, atmospheric circulation, and precipitation. The results from both methods indicate that moisture originating from the Pacific that leads to extreme precipitation in the IMW during winter takes distinct pathways and is influenced by gaps in the Cascades (Oregon–Washington), the Sierra Nevada (California), and Peninsular Ranges (from Southern California through Baja California). The moisture transported along these routes appears to be the primary source for heavy precipitation for the mountain ranges in the IMW. The synoptic conditions associated with the dominant IVT patterns include a trough–ridge couplet at 500 hPa, with the trough located northwest of the ridge where the associated circulation funnels moisture from the west-southwest through the mountain gaps and into the IMW.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0139.s1.

Corresponding author address: Michael Alexander, NOAA/Earth System Research Laboratory, R/PSD1, 325 Broadway, Boulder, CO 80305. E-mail: michael.alexander@noaa.gov

Abstract

Two methods were used to identify the paths of moisture transport that reach the U.S. Intermountain West (IMW) during heavy precipitation events in winter. In the first, the top 150 precipitation events at stations located within six regions in the IMW were identified, and then back trajectories were initiated at 6-h intervals on those days at the four Climate Forecast System Reanalysis grid points nearest the stations. The second method identified the leading patterns of integrated water vapor transport (IVT) using the three leading empirical orthogonal functions of IVT over land that were first normalized by the local standard deviation. The top 1% of the associated 6-hourly time series was used to construct composites of IVT, atmospheric circulation, and precipitation. The results from both methods indicate that moisture originating from the Pacific that leads to extreme precipitation in the IMW during winter takes distinct pathways and is influenced by gaps in the Cascades (Oregon–Washington), the Sierra Nevada (California), and Peninsular Ranges (from Southern California through Baja California). The moisture transported along these routes appears to be the primary source for heavy precipitation for the mountain ranges in the IMW. The synoptic conditions associated with the dominant IVT patterns include a trough–ridge couplet at 500 hPa, with the trough located northwest of the ridge where the associated circulation funnels moisture from the west-southwest through the mountain gaps and into the IMW.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0139.s1.

Corresponding author address: Michael Alexander, NOAA/Earth System Research Laboratory, R/PSD1, 325 Broadway, Boulder, CO 80305. E-mail: michael.alexander@noaa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 4.71 MB)
Save