• Atkins, D. E., and et al. , 2003: Revolutionizing science and engineering through cyberinfrastructure: Report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure. National Science Foundation, 84 pp. [Available online at www.nsf.gov/cise/sci/reports/atkins.pdf.]

  • Bottum, J. R., , Davis J. F. , , Siegel P. M. , , Wheeler B. , , and Oblinger D. G. , 2008: Cyberinfrastructure: In tune for the future. EDUCAUSE Rev., 43 (4), 11–17. [Available online at https://net.educause.edu/ir/library/pdf/ERM0840.pdf.]

    • Search Google Scholar
    • Export Citation
  • Clark, P., 1995: Automated surface observations, new challenges - new tools. Preprints, Sixth Conf. on Aviation Weather Systems, Dallas, TX, Amer. Meteor. Soc., 445–450.

  • Demir, I., , and Krajewski W. F. , 2013: Towards an integrated Flood Information System: Centralized data access, analysis, and visualization. Environ. Modell. Software, 50, 7784, doi:10.1016/j.envsoft.2013.08.009.

    • Search Google Scholar
    • Export Citation
  • Fulker, D., , Bates S. , , and Jacobs C. , 1997: Unidata: A virtual community sharing resources via technological infrastructure. Bull. Amer. Meteor. Soc., 78, 457468, doi:10.1175/1520-0477(1997)078<0457:UAVCSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and et al. , 2014: The Global Precipitation Measurement (GPM) mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., , Gao X. , , Sorooshian S. , , and Gupta H. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., , Ntelekos A. , , and Goska R. , 2006: A GIS based methodology for the assessment of weather radar beam blockage in mountainous regions: Two examples from the U.S. NEXRAD network. Comput. Geosci., 32, 283302, doi:10.1016/j.cageo.2005.06.024.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and et al. , 2011: Towards better utilization of NEXRAD data in hydrology: An overview of Hydro-NEXRAD. J. Hydroinf., 13, 255266, doi:10.2166/hydro.2010.056.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., , Kruger A. , , Singh S. , , Seo B.-C. , , and Smith J. A. , 2013: Hydro-NEXRAD-2: Real time access to customized radar-rainfall for hydrologic applications. J. Hydroinf., 15, 580590, doi:10.2166/hydro.2012.227.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., , Krajewski W. F. , , Domaszczynski P. , , and Smith J. A. , 2011: Hydro-NEXRAD: Metadata computation and use. J. Hydroinf., 13, 267276, doi:10.2166/hydro.2010.057.

    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., , Krajewski W. F. , , and Young C. B. , 2004: Radar beam occultation studies using GIS and DEM technology: An example study of Guam. J. Atmos. Oceanic Technol., 21, 9951006, doi:10.1175/1520-0426(2004)021<0995:RBOSUG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., , Nesbitt S. W. , , and Carey L. D. , 2009: On the correction of partial beam blockage in polarimetric radar data. J. Atmos. Oceanic Technol., 26, 943957, doi:10.1175/2008JTECHA1133.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., , and Mitchell K. E. , 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Newman, H. B., , Ellisman M. H. , , and Orcutt J. A. , 2003: Data-intensive e-science frontier research in the coming decade. Commun. ACM, 46 (11), 68–77, doi:10.1145/948383.948411.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., , and Krajewski W. , 2013: Status update on the GPM ground validation Iowa Flood Studies (IFloodS) field experiment. Extended Abstracts, European Geosciences Union General Assembly 2013, Geophys. Res. Abstracts, 15, Vienna, Austria. [Available online at http://meetingorganizer.copernicus.org/EGU2013/EGU2013-13345.pdf.]

  • Ramachandran, R., , Maskey M. , , Kulkarni A. , , Conover H. , , Nair U. S. , , and Movva S. , 2012: Talkoot: Software tool to create collaboratories for Earth science. Earth Sci. Inf.,5, 33–41, doi:10.1007/s12145-012-0094-y.

  • Ramachandran, R., , Kulkarni A. , , McEniry M. , , Lin A. , , Tanner S. , , and Graves S. , 2013: Fostering national and international collaborations for Arctic resources using a virtual collaborator. 29th Conf. on Environmental Information Processing Technologies, Austin, TX, Amer. Meteor. Soc., 2. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper214106.html.]

  • Schwaller, M. R., , and Morris K. R. , 2011: A ground validation network for the Global Precipitation Measurement Mission. J. Atmos. Oceanic Technol., 28, 301319, doi:10.1175/2010JTECHA1403.1.

    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., , Krajewski W. F. , , Kruger A. , , Domaszczynski P. , , Smith J. A. , , and Steiner M. , 2011: Radar-rainfall estimation algorithms of Hydro-NEXRAD. J. Hydroinf., 13, 277291, doi:10.2166/hydro.2010.003.

    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., , Cunha L. K. , , and Krajewski W. F. , 2013: Uncertainty in radar-rainfall composite and its impact on hydrologic prediction for the eastern Iowa flood of 2008. Water Resour. Res., 49, 27472764, doi:10.1002/wrcr.20244.

    • Search Google Scholar
    • Export Citation
  • Sherretz, L. A., , and Fulker D. W. , 1988: Unidata: Enabling universities to acquire and analyze scientific data. Bull. Amer. Meteor. Soc., 69, 373376, doi:10.1175/1520-0477(1988)069<0373:UEUTAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and et al. , 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, doi:10.1016/j.atmosres.2011.10.021.

    • Search Google Scholar
    • Export Citation
  • VanDyk, J. K., , and Westgate M. , 2007: Pro Drupal Development. Apress, 428 pp.

  • Xue, X., , Hong Y. , , Limaye A. S. , , Gourley J. J. , , Huffman G. J. , , Khan S. I. , , Dorji C. , , and Chen S. , 2013: Statistical and hydrological evaluation of TRMM-based multi-satellite precipitation analysis over the Wangchu basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol., 499, 9199, doi:10.1016/j.jhydrol.2013.06.042.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and et al. , 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 95 40
PDF Downloads 26 26 5

Data-Enabled Field Experiment Planning, Management, and Research Using Cyberinfrastructure

View More View Less
  • 1 IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa
  • | 2 Information Technology and Systems Center, University of Alabama in Huntsville, Huntsville, Alabama
  • | 3 IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa
  • | 4 Information Technology and Systems Center, University of Alabama in Huntsville, Huntsville, Alabama
  • | 5 Office of Field Support, NASA Goddard Space Flight Center, Wallops Island, Virginia
© Get Permissions
Restricted access

Abstract

In the spring of 2013, NASA conducted a field campaign known as Iowa Flood Studies (IFloodS) as part of the Ground Validation (GV) program for the Global Precipitation Measurement (GPM) mission. The purpose of IFloodS was to enhance the understanding of flood-related, space-based observations of precipitation processes in events that transpire worldwide. NASA used a number of scientific instruments such as ground-based weather radars, rain and soil moisture gauges, stream gauges, and disdrometers to monitor rainfall events in Iowa. This article presents the cyberinfrastructure tools and systems that supported the planning, reporting, and management of the field campaign and that allow these data and models to be accessed, evaluated, and shared for research. The authors describe the collaborative informatics tools, which are suitable for the network design, that were used to select the locations in which to place the instruments. How the authors used information technology tools for instrument monitoring, data acquisition, and visualizations after deploying the instruments and how they used a different set of tools to support data analysis and modeling after the campaign are also explained. All data collected during the campaign are available through the Global Hydrology Resource Center (GHRC), a NASA Distributed Active Archive Center (DAAC).

Corresponding author address: Ibrahim Demir, Iowa Flood Center, IIHR–Hydroscience and Engineering, 207 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242. E-mail: ibrahim-demir@uiowa.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Abstract

In the spring of 2013, NASA conducted a field campaign known as Iowa Flood Studies (IFloodS) as part of the Ground Validation (GV) program for the Global Precipitation Measurement (GPM) mission. The purpose of IFloodS was to enhance the understanding of flood-related, space-based observations of precipitation processes in events that transpire worldwide. NASA used a number of scientific instruments such as ground-based weather radars, rain and soil moisture gauges, stream gauges, and disdrometers to monitor rainfall events in Iowa. This article presents the cyberinfrastructure tools and systems that supported the planning, reporting, and management of the field campaign and that allow these data and models to be accessed, evaluated, and shared for research. The authors describe the collaborative informatics tools, which are suitable for the network design, that were used to select the locations in which to place the instruments. How the authors used information technology tools for instrument monitoring, data acquisition, and visualizations after deploying the instruments and how they used a different set of tools to support data analysis and modeling after the campaign are also explained. All data collected during the campaign are available through the Global Hydrology Resource Center (GHRC), a NASA Distributed Active Archive Center (DAAC).

Corresponding author address: Ibrahim Demir, Iowa Flood Center, IIHR–Hydroscience and Engineering, 207 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242. E-mail: ibrahim-demir@uiowa.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Save