• Arora, V. K., and et al. , 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett.,38, L05805, doi:10.1029/2010GL046270.

  • Barnston, A. G., , Tippett M. K. , , L’Heureux M. L. , , Li S. , , and DeWitt D. G. , 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc.,93 (Suppl.), ES48–ES50, doi:10.1175/BAMS-D-11-00111.2.

  • Bastola, S., , Misra V. , , and Li H. , 2013: Seasonal hydrological forecasts for watersheds over the southeastern United States for the boreal summer and fall seasons. Earth Interact., 17, doi:10.1175/2013EI000519.1.

    • Search Google Scholar
    • Export Citation
  • Beven, K., 2006: A manifesto for the equifinality thesis. J. Hydrol.,320, 18–36, doi:10.1016/j.jhydrol.2005.07.007.

  • Bohn, T. J., , Sonessa M. Y. , , and Lettenmaier D. P. , 2010: Seasonal hydrologic forecasting: do multimodel ensemble averages always yield improvements in forecast skill? J. Hydrometeor., 11, 13581372, doi:10.1175/2010JHM1267.1.

    • Search Google Scholar
    • Export Citation
  • Bürger, G., , Murdock T. Q. , , Werner A. T. , , Sobie S. R. , , and Cannon A. J. , 2012: Downscaling extremes—An intercomparison of multiple statistical methods for present climate. J. Climate, 25, 43664388, doi:10.1175/JCLI-D-11-00408.1.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., , Redmond K. T. , , and Riddle L. G. , 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893, doi:10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., , Serreze M. C. , , and McCabe G. J. , 2001: Historical effects of El Niño and La Niña events on the seasonal evolution of the montane snowpack in the Columbia and Colorado River basins. Water Resour. Res., 37, 741757, doi:10.1029/2000WR900305.

    • Search Google Scholar
    • Export Citation
  • Fleming, S. W., , Whitfield P. H. , , Moore R. D. , , and Quilty E. J. , 2007: Regime-dependent streamflow sensitivities to Pacific climate modes cross the Georgia–Puget transboundary ecoregion. Hydrol. Processes, 21, 32643287, doi:10.1002/hyp.6544.

    • Search Google Scholar
    • Export Citation
  • Franz, K., , Hartmann H. C. , , Sorooshian S. , , and Bales R. , 2003: Verification of National Weather Service ensemble streamflow predictions for water supply forecasting in the Colorado River basin. J. Hydrometeor., 4, 11051118, doi:10.1175/1525-7541(2003)004<1105:VONWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fraser Basin Council, 2010: Environmental protection in flood hazard management: A guide to practitioners. Report, 68 pp. [Available online at www.fraserbasin.bc.ca/_Library/Water/report_flood_and_environmental_protection_2010.pdf.]

  • Global Soil Data Task, 2000: Global Soil Data Products CD-ROM contents (IGBP-DIS). Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, digital media, doi:10.3334/ORNLDAAC/565.

  • Gobena, A. K., , Weber F. A. , , and Fleming S. W. , 2013: The role of large-scale climate modes in regional streamflow variability and implications for water supply forecasting: A case study of the Canadian Columbia River basin. Atmos.–Ocean, 51, 380391, doi:10.1080/07055900.2012.759899.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., , Salathé E. P. , , and Carrasco P. , 2010: Statistical downscaling techniques for global climate model simulations of temperature and precipitation with application to water resources planning studies. Final Rep. for the Columbia Basin Climate Change Scenarios Project, 27 pp. [Available online at http://warm.atmos.washington.edu/2860/r7climate/study_report/CBCCSP_chap4_gcm_final.pdf.]

  • Hidalgo, H. G., , and Dracup J. A. , 2003: ENSO and PDO effects on hydroclimatic variations of the upper Colorado River basin. J. Hydrometeor., 4, 523, doi:10.1175/1525-7541(2003)004<0005:EAPEOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jarvis, A., , Reuter H. I. , , Nelson A. , , and Guevara E. , 2008: Hole-filled SRTM for the globe version 4. SRTM 90m digital elevation database, CGIAR-CSI, Washington, DC. [Available online at http://srtm.csi.cgiar.org.]

  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc.,77, 437–471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

  • Kharin, V. V., , Zwiers F. W. , , and Gagnon N. , 2001: Skill of seasonal hindcasts as a function of the ensemble size. Climate Dyn.,17, 835–843, doi:10.1007/s003820100149.

  • Kirtman, B. P., and et al. , 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., , Luo L. , , Wood E. F. , , and Schaake J. , 2009: The role of initial conditions and forcing uncertainties in seasonal hydrologic forecasting. J. Geophys. Res., 114, D04114, doi:10.1029/2008JD010969.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Lettenmaier D. P. , , Wood E. F. , , and Burges S. J. , 1994: A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Wood E. F. , , and Lettenmaier D. P. , 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Xie Z. , , and Huang M. , 2003: A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model. J. Geophys. Res., 108, 8613, doi:10.1029/2002JD003090.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., , Raschke E. , , Nijssen B. , , and Lettenmaier D. P. , 1998: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J.,43, 131–141, doi:10.1080/02626669809492107.

  • Mahanama, S. P. P., , Koster R. D. , , Reichle R. H. , , and Zubair L. , 2008: The role of soil moisture initialization in subseasonal and seasonal streamflow prediction—A case study in Sri Lanka. Adv. Water Resour., 31, 13331343, doi:10.1016/j.advwatres.2008.06.004.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , and Hidalgo H. G. , 2008: Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci., 12, 551563, doi:10.5194/hess-12-551-2008.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., , and Dettinger M. D. , 2002: Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. J. Hydrometeor., 3, 1325, doi:10.1175/1525-7541(2002)003<0013:PMAPOY>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., , Denis B. , , Fontecilla J.-S. , , Lee W.-S. , , Kharin S. , , Hodgson J. , , and Archambault B. , 2011: The Canadian Seasonal to Interannual Prediction System (CanSIPS): An overview of its design and operational implementation. Tech. Note, Environment Canada, 51 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_systems/doc_opchanges/technote_cansips_20111124_e.pdf.]

  • Merryfield, W. J., and et al. , 2013a: The Canadian Seasonal to Interannual Prediction System. Part I: Models and initialization. Mon. Wea. Rev., 141, 2910–2945, doi:10.1175/MWR-D-12-00216.1.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., , Lee W.-S. , , Wang W. , , Chen M. , , and Kumar A. , 2013b: Multi-system seasonal predictions of Arctic sea ice. Geophys. Res. Lett., 40, 15511556, doi:10.1002/grl.50317.

    • Search Google Scholar
    • Export Citation
  • Moore, R. D., 1991: Hydrology and water supply in the Fraser River basin. Water in Sustainable Development: Exploring Our Common Future in the Fraser River Basin, A. H. J Dorcey and J. R. Griggs, Eds., Wastewater Research Centre, University of British Columbia, 21–40.

  • Moriasi, D. N., , Arnold J. G. , , Van Liew M. W. , , Bingner R. L. , , Harmel R. D. , , and Veith T. L. , 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900, doi:10.13031/2013.23153.

    • Search Google Scholar
    • Export Citation
  • Morrison, J., , Quick M. C. , , and Foreman M. G. G. , 2002: Climate change in the Fraser River watershed: Flow and temperature projections. J. Hydrol.,263, 230–244, doi:10.1016/S0022-1694(02)00065-3.

  • Polade, S. D., , Gershunov A. , , Cayan D. R. , , Dettinger M. D. , , and Pierce D. W. , 2013: Natural climate variability and teleconnections to precipitation over the Pacific–North American region in CMIP3 and CMIP5 models. Geophys. Res. Lett.,40, 2296–2301, doi:10.1002/grl.50491.

  • Rice, S. P., , Church M. , , Wooldridge C. L. , , and Hickin E. J. , 2009: Morphology and evolution of bars in a wandering gravel‐bed river; lower Fraser River, British Columbia, Canada. Sedimentology,56, 709–736, doi:10.1111/j.1365-3091.2008.00994.x.

  • Saha, S., and et al. , 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Schnorbus, M., , Bennett K. , , and Werner A. , 2010: Quantifying the water resource impacts of mountain pine beetle and associated salvage harvest operations across a range of watershed scales: Hydrologic modeling of the Fraser River basin. Information Rep. BC-X-423, Canadian Forest Service, 64 pp. [Available online at http://cfs.nrcan.gc.ca/publications?id=31207.]

  • Schnorbus, M., , Bennett K. , , Werner A. , , and Berland A. , 2011: Hydrologic impacts of climate change in the peace, Campbell and Columbia watersheds, British Columbia, Canada. Final Rep. (Part II), Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC, Canada, 157 pp. [Available online at www.pacificclimate.org/sites/default/files/publications/Schnorbus.HydroModelling.FinalReport2.Apr2011.pdf.]

  • Scinocca, J. F., , McFarlane N. A. , , Lazare M. , , Li J. , , and Plummer D. , 2008: Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074, doi:10.5194/acp-8-7055-2008.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , Kushnir Y. , , Nakamura J. , , Ting M. , , and Naik N. , 2010: Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys. Res. Lett.,37, L14703, doi:10.1029/2010GL043830.

  • Shabbar, A., 2006: The impact of El Niño–Southern Oscillation on the Canadian climate. Adv. Geosci., 6, 149153, doi:10.5194/adgeo-6-149-2006.

    • Search Google Scholar
    • Export Citation
  • Shi, X., , Wood A. W. , , and Lettenmaier D. P. , 2008: How essential is hydrologic model calibration to seasonal streamflow forecasting? J. Hydrometeor., 9, 13501363, doi:10.1175/2008JHM1001.1.

    • Search Google Scholar
    • Export Citation
  • Shrestha, R. R., , Schnorbus M. A. , , Werner A. T. , , and Berland A. J. , 2012: Modelling spatial and temporal variability of hydrologic impacts of climate change in the Fraser River basin, British Columbia, Canada. Hydrol. Processes, 26, 18401860, doi:10.1002/hyp.9283.

    • Search Google Scholar
    • Export Citation
  • Shrestha, R. R., , Peters D. L. , , and Schnorbus M. A. , 2014: Evaluating the ability of a hydrologic model to replicate hydro-ecologically relevant indicators. Hydrol. Processes, 28, 42944310, doi:10.1002/hyp.9997.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., , and Lettenmaier D. P. , 2011: Seasonal hydrologic prediction in the United States: Understanding the role of initial hydrologic conditions and seasonal climate forecast skill. Hydrol. Earth Syst. Sci., 15, 35293538, doi:10.5194/hess-15-3529-2011.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., , Fyfe J. C. , , Flato G. M. , , Kharin V. V. , , and Merryfield W. J. , 2013: Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys. Res. Lett., 40, 529534, doi:10.1002/grl.50129.

    • Search Google Scholar
    • Export Citation
  • Todini, I., 1996: The ARNO rainfall–runoff model. J. Hydrol., 175, 339382, doi:10.1016/S0022-1694(96)80016-3.

  • Wang, E., , Zhang Y. , , Luo J. , , Chiew F. H. S. , , and Wang Q. J. , 2011: Monthly and seasonal streamflow forecasts using rainfall–runoff modeling and historical weather data. Water Resour. Res.,47, W05516, doi:10.1029/2010WR009922.

  • Weare, B. C., 2013: El Niño teleconnections in CMIP5 models. Climate Dyn.,41, 2165–2177, doi:10.1007/s00382-012-1537-3.

  • Werner, A. T., 2011: BCSD downscaled transient climate projections for eight select GCMs over British Columbia, Canada. Hydrologic Modelling Project Final Rep. (Part I), Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC, Canada, 63 pp. [Available online at www.pacificclimate.org/sites/default/files/publications/Werner.HydroModelling.FinalReport1.Apr2011.pdf.]

  • Whitfield, P. H., , Moore R. D. , , Fleming S. W. , , and Zawadzki A. , 2010: Pacific decadal oscillation and the hydroclimatology of western Canada—Review and prospects. Can. Water Resour. J., 35, 127, doi:10.4296/cwrj3501001.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., , Dawson C. W. , , and Barrow E. M. , 2002: SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Modell. Software, 17, 145157, doi:10.1016/S1364-8152(01)00060-3.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 650 pp.

  • Winkler, J. A., , Palutikof J. P. , , Andresen J. A. , , and Goodess C. M. , 1997: The simulation of daily temperature time series from GCM output. Part II: Sensitivity analysis of an empirical transfer function methodology. J. Climate, 10, 25142532, doi:10.1175/1520-0442(1997)010<2514:TSODTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., , Maurer E. P. , , Kumar A. , , and Lettenmaier D. P. , 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res.,107, 4429, doi:10.1029/2001JD000659.

  • Wood, A. W., , Leung L. , , Sridhar V. , , and Lettenmaier D. , 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., , Kumar A. , , and Lettenmaier D. P. , 2005: A retrospective assessment of National Centers for Environmental Prediction climate model–based ensemble hydrologic forecasting in the western United States. J. Geophys. Res.,110, D04105, doi:10.1029/2004JD004508.

  • Wulder, M., , Dechka J. , , Gillis M. , , Luther J. , , Hall R. , , and Beaudoin A. , 2003: Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program. For. Chron., 79, 10751083, doi:10.5558/tfc791075-6.

    • Search Google Scholar
    • Export Citation
  • Yapo, P. O., , Gupta H. V. , , and Sorooshian S. , 1998: Multi-objective global optimization for hydrologic models. J. Hydrol.,204, 83–97, doi:10.1016/S0022-1694(97)00107-8.

  • Younas, W., , and Tang Y. , 2013: PNA predictability at various time scales. J. Climate, 26, 90909114, doi:10.1175/JCLI-D-12-00609.1.

  • Yuan, X., , and Wood E. F. , 2013: Multimodel seasonal forecasting of global drought onset. Geophys. Res. Lett., 40, 49004905, doi:10.1002/grl.50949.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., , Wood E. F. , , Roundy J. K. , , and Pan M. , 2013: CFSv2-based seasonal hydroclimatic forecasts over the conterminous United States. J. Climate, 26, 48284847, doi:10.1175/JCLI-D-12-00683.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 3
PDF Downloads 14 14 1

A Dynamical Climate Model–Driven Hydrologic Prediction System for the Fraser River, Canada

View More View Less
  • 1 Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada
© Get Permissions
Restricted access

Abstract

Recent improvements in forecast skill of the climate system by dynamical climate models could lead to improvements in seasonal streamflow predictions. This study evaluates the hydrologic prediction skill of a dynamical climate model–driven hydrologic prediction system (CM-HPS), based on an ensemble of statistically downscaled outputs from the Canadian Seasonal to Interannual Prediction System (CanSIPS). For comparison, historical and future climate traces–driven ensemble streamflow prediction (ESP) was employed. The Variable Infiltration Capacity model (VIC) hydrologic model setup for the Fraser River basin, British Columbia, Canada, was used as a test bed for the two systems. In both cases, results revealed limited precipitation prediction skill. For streamflow prediction, the ESP approach has very limited or no correlation skill beyond the months influenced by initial hydrologic conditions, while the CM-HPS has moderately better correlation skill, attributable to the enhanced temperature prediction skill that results from CanSIPS’s ability to predict El Niño–Southern Oscillation (ENSO) and its teleconnections. The root-mean-square error, bias, and categorical skills for the two methods are mostly similar. Hydrologic modeling uncertainty also affects the prediction skill, and in some cases prediction skill is constrained by hydrologic model skill. Overall, the CM-HPS shows potential for seasonal streamflow prediction, and further enhancements in climate models could potentially to lead to more skillful hydrologic predictions.

Corresponding author address: Dr. Rajesh R. Shrestha, Pacific Climate Impacts Consortium, University House 1, P.O. Box 1700 STN CSC, University of Victoria, Victoria BC V8W 2Y2, Canada. E-mail: rshresth@uvic.ca

Abstract

Recent improvements in forecast skill of the climate system by dynamical climate models could lead to improvements in seasonal streamflow predictions. This study evaluates the hydrologic prediction skill of a dynamical climate model–driven hydrologic prediction system (CM-HPS), based on an ensemble of statistically downscaled outputs from the Canadian Seasonal to Interannual Prediction System (CanSIPS). For comparison, historical and future climate traces–driven ensemble streamflow prediction (ESP) was employed. The Variable Infiltration Capacity model (VIC) hydrologic model setup for the Fraser River basin, British Columbia, Canada, was used as a test bed for the two systems. In both cases, results revealed limited precipitation prediction skill. For streamflow prediction, the ESP approach has very limited or no correlation skill beyond the months influenced by initial hydrologic conditions, while the CM-HPS has moderately better correlation skill, attributable to the enhanced temperature prediction skill that results from CanSIPS’s ability to predict El Niño–Southern Oscillation (ENSO) and its teleconnections. The root-mean-square error, bias, and categorical skills for the two methods are mostly similar. Hydrologic modeling uncertainty also affects the prediction skill, and in some cases prediction skill is constrained by hydrologic model skill. Overall, the CM-HPS shows potential for seasonal streamflow prediction, and further enhancements in climate models could potentially to lead to more skillful hydrologic predictions.

Corresponding author address: Dr. Rajesh R. Shrestha, Pacific Climate Impacts Consortium, University House 1, P.O. Box 1700 STN CSC, University of Victoria, Victoria BC V8W 2Y2, Canada. E-mail: rshresth@uvic.ca
Save