• Aggarwal, P. K., , Joshi P. K. , , Ingram J. S. I. , , and Gupta R. K. , 2004: Adapting food systems of the Indo-Gangetic plains to global environmental change: Key information needs to a improve policy formulation. Environ. Sci. Policy, 7, 487498, doi:10.1016/j.envsci.2004.07.006.

    • Search Google Scholar
    • Export Citation
  • Alley, W. M., 1984: The Palmer drought severity index: Limitations and assumptions. J. Climate Appl. Meteor., 23, 11001109, doi:10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Briffa, K. R., , Osborn T. J. , , Schweingruber F. H. , , Harris I. C. , , Jones P. D. , , Shiyatov S. G. , , and Vaganov E. A. , 2001: Low-frequency temperature variations from a northern tree ring density network. J. Geophys. Res., 106, 29292941, doi:10.1029/2000JD900617.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., , Krusic P. J. , , and Jones P. D. , 2003: Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. Int. J. Climatol., 23, 707732, doi:10.1002/joc.911.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., , Anchukaitis K. J. , , Buckley B. M. , , D’Arrigo R. D. , , Jacoby G. C. , , and Wright W. E. , 2010: Asian monsoon failure and megadrought during the last millennium. Science, 328, 486489, doi:10.1126/science.1185188.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , Trenberth K. E. , , and Qian T. , 2004: A global dataset of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130, doi:10.1175/JHM-386.1.

    • Search Google Scholar
    • Export Citation
  • Elbert, J., and et al. , 2013: Late Holocene air temperature variability reconstructed from the sediments of Laguna Escondida, Patagonia, Chile (45°30′S). Palaeogeogr. Palaeoclimatol. Palaeoecol., 369, 482492, doi:10.1016/j.palaeo.2012.11.013.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., , Vinayachandran P. N. , , Francis P. A. , , and Gadgil S. , 2004: Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys. Res. Lett., 31, L12213, doi:10.1029/2004GL019733.

    • Search Google Scholar
    • Export Citation
  • Golovanova, I. V., , Sal’manova R. Y. , , and Demezhko D. Y. , 2012: Climate reconstruction in the Urals from geothermal data. Russ. Geol. Geophys., 53, 13661373, doi:10.1016/j.rgg.2012.10.009.

    • Search Google Scholar
    • Export Citation
  • Gupta, R. K., , Hobbs P. R. , , Ladha J. K. , , and Prabhakar S. V. R. K. , 2001: Resource conserving technologies: Transforming the rice–wheat systems of the Indo-Gangetic plains. APAARI Publ. 2002/1, Asia–Pacific Association of Agricultural Research Institutions, FAO Regional Office for Asia and the Pacific, Bangkok, Thailand, 42 pp. [Available online at www.apaari.org/wp-content/uploads/2009/05/ss_2002_01.pdf.]

  • Gyawali, R., , and Watkins D. W. , 2013: Continuous hydrologic modeling of snow-affected watersheds in the Great Lakes basin using HEC-HMS. J. Hydrol. Eng., 18, 2939, doi:10.1061/(ASCE)HE.1943-5584.0000591.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. H., , Ding Y. , , Griggs D. J. , , Nogue M. , , van der Linden P. J. , , Dai X. , , Maskell K. , , and Johnson C. A. , Eds., 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

  • Hughes, M. K., , Wu X. D. , , Shao X. M. , , and Garfin G. M. , 1994: A preliminary reconstruction of rainfall in north-central China since A.D. 1600 from tree-ring density and width. Quat. Res., 42, 8899, doi:10.1006/qres.1994.1056.

    • Search Google Scholar
    • Export Citation
  • Jacobi, J., , Perrone D. , , Duncan L. L. , , and Hornberger G. , 2013: A tool for calculating the Palmer drought indices. Water Resour. Res., 49, 60866089, doi:10.1002/wrcr.20342.

    • Search Google Scholar
    • Export Citation
  • Karim, A., , and Veizer J. , 2002: Water balance of the Indus River basin and moisture source in the Karakoram and western Himalayas: Implications from hydrogen and oxygen isotopes in river water. J. Geophys. Res., 107, 4362, doi:10.1029/2000JD000253.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., , Rajagopalan B. , , Hoerling M. , , Bates G. , , and Cane M. , 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119, doi:10.1126/science.1131152.

    • Search Google Scholar
    • Export Citation
  • Li, J., , Xie S. P. , , Cook E. R. , , Huang G. , , D’Arrigo R. , , Liu F. , , Ma J. , , and Zheng X. T. , 2011: Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Climate Change, 1, 114118, doi:10.1038/nclimate1086.

    • Search Google Scholar
    • Export Citation
  • MacDonald, G. M., , and Case R. A. , 2005: Variations in the Pacific decadal oscillation over the past millennium. Geophys. Res. Lett., 32, L08703, doi:10.1029/2005GL022478.

    • Search Google Scholar
    • Export Citation
  • Macias-Fauria, M., , Grinsted A. , , Helama S. , , and Holopainen J. , 2012: Persistence matters: Estimation of the statistical significance of paleoclimatic reconstruction statistics from autocorrelated time series. Dendrochronologia, 30, 179187, doi:10.1016/j.dendro.2011.08.003.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., , Timmermann A. , , and Timm O. , 2010: A unified proxy for ENSO and PDO variability since 1650. Climate Past, 6, 117, doi:10.5194/cp-6-1-2010.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , and Hu A. , 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J. Climate, 19, 16051623, doi:10.1175/JCLI3675.1.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., , and Singh V. P. , 2010: A review of drought concepts. J. Hydrol., 391, 202216, doi:10.1016/j.jhydrol.2010.07.012.

  • Nachtergaele, F., , Velthuizen H. V. , , Verelst L. , , and Wiberg D. , cited 2012: Harmonized World Soil Database version 1.2. FAO/IIASA/ISRIC/ISSCAS/JRC. [Available online at www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/.]

  • Nandakumar, T., , Ganguly K. , , Sharma P. , , and Gulati A. , 2010: Food and nutrition security status in India, opportunities for investment partnerships. ADB Sustainable Development Working Paper Series 16, Asian Development Bank, Manila, Philippines, 40 pp. [Available online at www.adb.org/publications/food-and-nutrition-security-status-india-opportunities-investment-partnerships.]

  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 65 pp. [Available online at http://lwf.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.]

  • Prasad, S., and et al. , 2014: Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India. Earth Planet. Sci. Lett., 391, 171182, doi:10.1016/j.epsl.2014.01.043.

    • Search Google Scholar
    • Export Citation
  • Ryu, J. H., , Svoboda M. D. , , Lenters J. D. , , Tadesse T. , , and Knutson C. L. , 2010: Potential extents for ENSO-driven hydrologic drought forecasts in the United States. Climatic Change, 101, 575597, doi:10.1007/s10584-009-9705-0.

    • Search Google Scholar
    • Export Citation
  • Shi, F., , Bao Y. , , and Gunten L. V. , 2012: Preliminary multiproxy surface air temperature field reconstruction for China over the past millennium. Sci. China Earth Sci.,55, 20582067, doi:10.1007/s11430-012-4374-7.

    • Search Google Scholar
    • Export Citation
  • Sikka, A. K., , and Ringler C. , 2009: Introduction to special issue. Int. J. River Basin Manage., 7, 107110.

  • Sinha, A., , Stott L. , , Berkelhammer M. , , Cheng H. , , Edwards R. L. , , Buckley B. , , Aldenderfer M. , , and Mudelsee M. , 2011: A global context for megadroughts in monsoon Asia during the past millennium. Quat. Sci. Rev., 30, 4762, doi:10.1016/j.quascirev.2010.10.005.

    • Search Google Scholar
    • Export Citation
  • Tan, M., , Liu T. S. , , Hou J. , , Qin X. , , Zhang H. , , and Li T. , 2003: Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophys. Res. Lett., 30, 1617, doi:10.1029/2003GL017352.

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 5594, doi:10.2307/210739.

  • Villalba, R., and et al. , 2012: Unusual Southern Hemisphere tree growth patterns induced by changes in the southern annular mode. Nat. Geosci., 5, 793798, doi:10.1038/ngeo1613.

    • Search Google Scholar
    • Export Citation
  • Wang, D., , Hejazi M. , , Cai X. , , and Valocchi A. J. , 2011: Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour. Res., 47, W09527, doi:10.1029/2010WR009845.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , and Matsuura K. , cited 2012: Terrestrial air temperature and precipitation: Monthly and annual time series (1900–2010). Center for Climatic Research, University of Delaware. [Available online at http://climate.geog.udel.edu/~climate/.]

  • Yadav, R. R., , Misra K. G. , , Kotlia B. S. , , and Upreti N. , 2014: Premonsoon precipitation variability in Kumaon Himalaya, India over a perspective of ~300 years. Quat. Int., 325, 213219, doi:10.1016/j.quaint.2013.09.005.

    • Search Google Scholar
    • Export Citation
  • Yi, L., , Yu H. , , Ge J. , , Lai Z. , , Xu X. , , Qin L. , , and Peng S. , 2011: Reconstructions of annual summer precipitation and temperature in north-central China since 1470 AD based on drought/flood index and tree-ring records. Climatic Change, 110, 469–498, doi:10.1007/s10584-011-0052-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 4
PDF Downloads 8 8 1

Paleoprecipitation Reconstruction in the Indus and Ganges Basins by Inverse Modeling of Tree-Ring-Based PDSI

View More View Less
  • 1 Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida
  • | 2 International Food Policy Research Institute, Washington, D.C.
© Get Permissions
Restricted access

Abstract

The South Asian monsoon is critically important for agricultural production in the region that includes the vast, fertile Indus and Ganges basins. However, the behavior of the South Asian monsoon is not well understood because of its complex nature, and existing instrumental climate records are insufficient for investigating the risks of the low-frequency but high-impact megadroughts that have historically occurred. This paper develops an inverse Palmer drought severity index (PDSI) model to retrieve paleoprecipitation for the region during the time period of 1300–1899, using available data of the water-holding capacity of soil, temperature, and reconstructed PDSI based on the tree-ring analysis of Cook et al.. Temperature data are reconstructed by a regression analysis utilizing an existing temperature reconstruction in an adjacent region and the Pacific decadal oscillation. Based on the retrieved paleoprecipitation, several megadroughts are identified during the reconstruction period. The drought frequency in the Indus basin is higher than that in the Ganges basin. The intensity, frequency, and spatial extent of severe droughts increased from 1300–1899 to 1900–2010. As a signal of climate change, increasing intensity and frequency of severe drought in the Indus and Ganges River basins needs adaptation strategies and drought preparedness measures to secure the food production in this area.

Denotes Open Access content.

Corresponding author address: Dingbao Wang, Department of Civil, Environmental, and Construction Engineering, University of Central Florida, 12800 Pegasus Dr., Suite 211, Orlando, FL 32816. E-mail: dingbao.wang@ucf.edu

Abstract

The South Asian monsoon is critically important for agricultural production in the region that includes the vast, fertile Indus and Ganges basins. However, the behavior of the South Asian monsoon is not well understood because of its complex nature, and existing instrumental climate records are insufficient for investigating the risks of the low-frequency but high-impact megadroughts that have historically occurred. This paper develops an inverse Palmer drought severity index (PDSI) model to retrieve paleoprecipitation for the region during the time period of 1300–1899, using available data of the water-holding capacity of soil, temperature, and reconstructed PDSI based on the tree-ring analysis of Cook et al.. Temperature data are reconstructed by a regression analysis utilizing an existing temperature reconstruction in an adjacent region and the Pacific decadal oscillation. Based on the retrieved paleoprecipitation, several megadroughts are identified during the reconstruction period. The drought frequency in the Indus basin is higher than that in the Ganges basin. The intensity, frequency, and spatial extent of severe droughts increased from 1300–1899 to 1900–2010. As a signal of climate change, increasing intensity and frequency of severe drought in the Indus and Ganges River basins needs adaptation strategies and drought preparedness measures to secure the food production in this area.

Denotes Open Access content.

Corresponding author address: Dingbao Wang, Department of Civil, Environmental, and Construction Engineering, University of Central Florida, 12800 Pegasus Dr., Suite 211, Orlando, FL 32816. E-mail: dingbao.wang@ucf.edu
Save