• Anderson, M. C., and et al. , 2011: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci., 15, 223239, doi:10.5194/hess-15-223-2011.

    • Search Google Scholar
    • Export Citation
  • Cammalleri, C., , Anderson M. , , and Kustas W. , 2014: Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications. Hydrol. Earth Syst. Sci., 18, 18851894, doi:10.5194/hess-18-1885-2014.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and et al. , 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, doi:10.1029/95JD02165.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and et al. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Hain, C. R., , Crow W. T. , , Anderson M. C. , , and Yilmaz M. T. , 2015: Diagnosing neglected soil moisture source/sink processes via a thermal infrared-based two-source energy balance model. J. Hydrometeor., doi:10.1175/JHM-D-14-0017.1, in press.

    • Search Google Scholar
    • Export Citation
  • Jung, M., , Reichstein M. , , and Bondeau A. , 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2001–2013, doi:10.5194/bg-6-2001-2009.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and et al. , 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Landerer, F., , and Swenson S. , 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and et al. , 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and et al. , 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., , Chen J. , , Kato H. , , Famiglietti J. S. , , Nigro J. , , and Wilson C. R. , 2007: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J., 15, 159166, doi:10.1007/s10040-006-0103-7.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Syed, T. H., , Famiglietti J. S. , , Rodell M. , , Chen J. , , and Wilson C. R. , 2008: Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44, W02433, doi:10.1029/2006WR005779.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and et al. , 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., , Piao S. , , Lin X. , , Yin G. , , Peng S. , , Ciais P. , , and Myneni R. B. , 2012: Global evapotranspiration over the past three decades: Estimation based on the water balance equation combined with empirical models. Environ. Res. Lett., 7, 014026, doi:10.1088/1748-9326/7/1/014026.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., , Wang T. , , Zhou F. , , Ciais P. , , Mao J. , , Shi X. , , and Piao S. , 2014: A worldwide analysis of spatiotemporal changes in water balance–based evapotranspiration from 1982 to 2009. J. Geophys. Res. Atmos.,119, 1186–1202, doi:10.1002/2013JD020941.

  • Zhang, Y., and et al. , 2012: Decadal trends in evaporation from global energy and water balances. J. Hydrometeor., 13, 379–391, doi:10.1175/JHM-D-11-012.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 9
PDF Downloads 20 20 2

On the Use of a Water Balance to Evaluate Interannual Terrestrial ET Variability

View More View Less
  • 1 International Research Institute for Climate and Society, Earth Institute, Columbia University, Palisades, New York
  • | 2 Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland
  • | 3 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 4 Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland
© Get Permissions
Restricted access

Abstract

Accurately measuring interannual variability in terrestrial evapotranspiration ET is a major challenge for efforts to detect trends in the terrestrial hydrologic cycle. Based on comparisons with annual values of terrestrial evapotranspiration derived from a terrestrial water balance analysis, past research has cast doubt on the ability of existing products to accurately capture variability. Using a variety of estimates, this analysis reexamines this conclusion and finds that estimates of variations obtained from a land surface model are more strongly correlated with independently acquired from thermal infrared remote sensing than derived from water balance considerations. This tendency is attributed to significant interannual variations in terrestrial water storage neglected by the water balance approach. Overall, results demonstrate the need to reassess perceptions concerning the skill of estimates derived from land surface models and show the value of accurate remotely sensed ET products for the validation of interannual ET.

Corresponding author address: Eunjin Han, International Research Institute for Climate and Society, Earth Institute, Columbia University, 61 Route 9W, Monell Building, Palisades, NY 10964-1000. E-mail: eunjin@iri.columbia.edu

Abstract

Accurately measuring interannual variability in terrestrial evapotranspiration ET is a major challenge for efforts to detect trends in the terrestrial hydrologic cycle. Based on comparisons with annual values of terrestrial evapotranspiration derived from a terrestrial water balance analysis, past research has cast doubt on the ability of existing products to accurately capture variability. Using a variety of estimates, this analysis reexamines this conclusion and finds that estimates of variations obtained from a land surface model are more strongly correlated with independently acquired from thermal infrared remote sensing than derived from water balance considerations. This tendency is attributed to significant interannual variations in terrestrial water storage neglected by the water balance approach. Overall, results demonstrate the need to reassess perceptions concerning the skill of estimates derived from land surface models and show the value of accurate remotely sensed ET products for the validation of interannual ET.

Corresponding author address: Eunjin Han, International Research Institute for Climate and Society, Earth Institute, Columbia University, 61 Route 9W, Monell Building, Palisades, NY 10964-1000. E-mail: eunjin@iri.columbia.edu
Save