• AghaKouchak, A., , and Nakhjiri N. , 2012: A near real-time satellite-based global drought climate data record. Environ. Res. Lett.,7, 044037, doi:10.1088/1748-9326/7/4/044037.

  • Becker, A., , Finger P. , , Meyer-Christoffer A. , , Rudolf B. , , Schamm K. , , Schneider U. , , and Ziese M. , 2013: A description of the global land surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7799, doi:10.5194/essd-5-71-2013.

    • Search Google Scholar
    • Export Citation
  • Chen, M., , Xie P. , , Janowiak J. E. , , and Arkin P. A. , 2002: Global land precipitation. A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, doi:10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., , Wetterhall F. , , Di Giuseppe F. , , Naumann G. , , Barbosa P. , , Vogt J. , , Pozzi W. , , and Pappenberger F. , 2014a: Global meteorological drought—Part 1: Probabilistic monitoring. Hydrol. Earth Syst. Sci. Discuss., 11, 889917, doi:10.5194/hessd-11-889-2014.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., and et al. , 2014b: Global meteorological drought—Part 2: Seasonal forecasts. Hydrol. Earth Syst. Sci. Discuss., 11, 919944, doi:10.5194/hessd-11-919-2014.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the Standardized Precipitation Index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35, 311322, doi:10.1111/j.1752-1688.1999.tb03592.x.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., , AghaKouchak A. , , Nakhjiri N. , , and Farahmand A. , 2014: Global integrated drought monitoring and prediction system. Sci. Data, 1, 140001, doi:10.1038/sdata.2014.1.

    • Search Google Scholar
    • Export Citation
  • Harris, I., , Jones P. D. , , Osborn T. J. , , and Lister D. H. , 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset Int. J. Climatol., 34, 623–642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hayes, M., , Svoboda M. , , LeComte D. , , Redmond K. , , and Pasteris P. , 2005: Drought monitoring: New tools for the 21st century. Drought and Water Crises: Science, Technology, and Management Issues, D. A. Wilhite, Ed., CRC Press, 53–69.

  • Hayes, M., , Svoboda M. , , Wall N. , , and Widhalm M. , 2011: The Lincoln Declaration on Drought Indices. Bull. Amer. Meteor. Soc., 92, 485488, doi:10.1175/2010BAMS3103.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , Adler R. F. , , Bolvin D. T. , , and Gu G. , 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., , and Xie P. , 1999: CAMS-OPI: A global satellite–rain gauge merged product for real-time precipitation monitoring applications. J. Climate, 12, 33353342, doi:10.1175/1520-0442(1999)012<3335:COAGSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and et al. , 2013: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585–601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., , Bell M. A. , , Tippett M. K. , , Kumar A. , , Hoerling M. P. , , Quan X.-W. , , and Wang H. , 2012: Baseline probabilities for the seasonal prediction of meteorological drought. J. Appl. Meteor. Climatol, 51, 12221237, doi:10.1175/JAMC-D-11-0132.1.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., , Doesken N. J. , , and Kleist J. , 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anheim, CA, Amer. Meteor. Soc., 179–184.

  • McKee, T. B., , Doesken N. J. , , and Kleist J. , 1995: Drought monitoring with multiple time scale. Preprints, Ninth Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 233236.

  • Mo, K. C., 2011: Drought onset and recovery over the United States. J. Geophys. Res., 116, D20106, doi:10.1029/2011JD016168.

  • Mo, K. C., , and Lettenmaier D. P. , 2014a: Objective drought classification using multiple land surface models. J. Hydrometeor., 15, 9901010, doi:10.1175/JHM-D-13-071.1.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and Lettenmaier D. P. , 2014b: Hydrologic prediction over the conterminous United States using the National Multi-Model Ensemble. J. Hydrometeor., 15, 14571472, doi:10.1175/JHM-D-13-0197.1.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , Chen L. , , Shukla S. , , Bohn T. , , and Lettenmaier P. D. , 2012: Uncertainties in North American Land Data Assimilation systems over the contiguous United States. J. Hydrometeor., 13, 9961009, doi:10.1175/JHM-D-11-0132.1.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., and et al. , 2014: A prototype global drought information system based on multiple land surface models. J. Hydrometeor., 15, 16611676, doi:10.1175/JHM-D-13-090.1.

    • Search Google Scholar
    • Export Citation
  • Pozzi, W., and et al. , 2013: Toward global drought early warning capability: Expanding international cooperation for the development of a framework for monitoring and forecasting. Bull. Amer. Meteor. Soc., 94, 776785, doi:10.1175/BAMS-D-11-00176.1.

    • Search Google Scholar
    • Export Citation
  • Pulwarty, R. S., , and Sivakumar M. , 2014: Information systems in a changing climate: Early warnings and drought risk management. Wea. Climate Extremes, 3, 1421, doi:10.1016/j.wace.2014.03.005.

    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., , Hoerling M. P. , , Lyon B. , , Kumar A. , , Bell M. A. , , Tippett M. K. , , and Wang H. , 2012: Prospects for dynamical prediction of meteorological drought. J. Appl. Meteor. Climatol., 51, 12381252, doi:10.1175/JAMC-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., , and Schneider U. , 2005: Calculation of gridded precipitation data for global land surface using in situ gauge observations. Proc. Second Workshop of the Int. Precipitation Working Group, Monterey, CA, Naval Research Laboratory, 231247.

  • Saha, S., and et al. , 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Shukla, S., , and Lettenmaier D. P. , 2011: Seasonal hydrologic prediction in the United States: Understanding the role of initial conditions and seasonal climate forecast skill. Hydro. Earth Syst. Sci.,15, 3529–3538, doi:10.5194/hess-15-3529-2011.

  • Svoboda, M., and et al. , 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, doi:10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., , Beguería S. , , and López-Moreno J. I. , 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, doi:10.1175/2009JCLI2909.1.

    • Search Google Scholar
    • Export Citation
  • WCRP, 2012: WCRP Global Drought Information System (GDIS) Workshop. Final Rep., 17 pp. [Available online at http://eprints.soton.ac.uk/342410/1/GDIS_Report_final.pdf.]

  • Wilhite, D. A., , Sivakumar M. V. K. , , and Wood D. A. , Eds., 2000: Early warning systems for drought preparedness and drought management. WMO/TD-1037, WMO, Geneva, Switzerland, 185 pp. [Available online at www.wamis.org/agm/pubs/agm2/agm02.pdf.]

  • Xie, P., , and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoon, J. H., , Mo K. C. , , and Wood E. F. , 2012: Dynamic model based seasonal prediction of meteorological drought over the contiguous United States. J. Hydrometeor., 13, 463482, doi:10.1175/JHM-D-11-038.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., , and Wood E. F. , 2013: Multimodel seasonal forecasting of global drought onset. Geophys. Res. Lett., 40, 49004905, doi:10.1002/grl.50949.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 108 108 14
PDF Downloads 65 65 13

Global Meteorological Drought Prediction Using the North American Multi-Model Ensemble

View More View Less
  • 1 Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland
  • | 2 International Research Institute for Climate and Society, Earth Institute, Columbia University, Palisades, New York
© Get Permissions
Restricted access

Abstract

Precipitation forecasts from six climate models in the North American Multi-Model Ensemble (NMME) are combined with observed precipitation data to generate forecasts of the standardized precipitation index (SPI) for global land areas, and their skill was evaluated over the period 1982–2010. The skill of monthly precipitation forecasts from the NMME is also assessed. The value-added utility in using the NMME models to predict the SPI is identified by comparing the skill of its forecasts with a baseline skill based solely on the inherent persistence characteristics of the SPI itself. As expected, skill of the NMME-generated SPI forecasts depends on the season, location, and specific index considered (the 3- and 6-month SPI were evaluated). In virtually all locations and seasons, statistically significant skill is found at lead times of 1–2 months, although the skill comes largely from initial conditions. Added skill from the NMME is primarily in regions exhibiting El Niño–Southern Oscillation (ENSO) teleconnections. Knowledge of the initial drought state is critical in SPI prediction, and there are considerable differences in observed SPI values between different datasets. Root-mean-square differences between datasets can exceed typical thresholds for drought, particularly in the tropics. This is particularly problematic for precipitation products available in near–real time. Thus, in the near term, the largest advances in the global prediction of meteorological drought are obtainable from improvements in near-real-time precipitation observations for the globe. In the longer term, improvements in precipitation forecast skill from dynamical models will be essential in this effort.

Corresponding author address: Kingtse C. Mo, Climate Prediction Center, NOAA/NWS/NCEP, 5830 University Research Ct., College Park, MD 20740. E-mail: kingtse.mo@noaa.gov

Abstract

Precipitation forecasts from six climate models in the North American Multi-Model Ensemble (NMME) are combined with observed precipitation data to generate forecasts of the standardized precipitation index (SPI) for global land areas, and their skill was evaluated over the period 1982–2010. The skill of monthly precipitation forecasts from the NMME is also assessed. The value-added utility in using the NMME models to predict the SPI is identified by comparing the skill of its forecasts with a baseline skill based solely on the inherent persistence characteristics of the SPI itself. As expected, skill of the NMME-generated SPI forecasts depends on the season, location, and specific index considered (the 3- and 6-month SPI were evaluated). In virtually all locations and seasons, statistically significant skill is found at lead times of 1–2 months, although the skill comes largely from initial conditions. Added skill from the NMME is primarily in regions exhibiting El Niño–Southern Oscillation (ENSO) teleconnections. Knowledge of the initial drought state is critical in SPI prediction, and there are considerable differences in observed SPI values between different datasets. Root-mean-square differences between datasets can exceed typical thresholds for drought, particularly in the tropics. This is particularly problematic for precipitation products available in near–real time. Thus, in the near term, the largest advances in the global prediction of meteorological drought are obtainable from improvements in near-real-time precipitation observations for the globe. In the longer term, improvements in precipitation forecast skill from dynamical models will be essential in this effort.

Corresponding author address: Kingtse C. Mo, Climate Prediction Center, NOAA/NWS/NCEP, 5830 University Research Ct., College Park, MD 20740. E-mail: kingtse.mo@noaa.gov
Save