• Adegoke, J. O., , Pielke R. A. Sr., , Eastman J. , , Mahmood R. , , and Hubbard K. G. , 2003: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. high plains. Mon. Wea. Rev.,131, 556–564, doi:10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2.

  • Adegoke, J. O., , Pielke R. A. Sr., , and Carleton A. M. , 2007: Observational and modeling studies of the impacts of agriculture-related land use change on planetary boundary layer processes in the central U.S. Agric. For. Meteor., 142, 203215, doi:10.1016/j.agrformet.2006.07.013.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1992: FIFE atmospheric boundary layer budget methods. J. Geophys. Res., 97, 18 52318 531, doi:10.1029/91JD03172.

  • Bonfils, C., , and Lobell D. , 2007: Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA, 104, 13 58213 587, doi:10.1073/pnas.0700144104.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., , Myhre G. , , and Myhre A. , 2004: Direct human influence of irrigation on atmospheric water vapour and climate. Climate Dyn., 22, 597603, doi:10.1007/s00382-004-0402-4.

    • Search Google Scholar
    • Export Citation
  • Brakke, T. W., , Verma S. B. , , and Rosenberg N. J. , 1978: Local and regional components of sensible heat advection. J. Appl. Meteor., 17, 955963, doi:10.1175/1520-0450(1978)017<0955:LARCOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chase, T. N., , Piekle R. A. Sr., , Kittel T. G. F. , , Baron J. S. , , and Stohlgren T. J. , 1999: Potential impacts on Colorado Rocky Mountain weather due to land use changes on the adjacent Great Plains. J. Geophys. Res., 104, 16 67316 690, doi:10.1029/1999JD900118.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and et al. , 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268, doi:10.1029/95JD02165.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and et al. , 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46, 694713, doi:10.1175/JAM2463.1.

    • Search Google Scholar
    • Export Citation
  • DeAngelis, A., , Dominguez F. , , Fan Y. , , Robock A. , , Kustu M. D. , , and Robinson D. , 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, doi:10.1029/2010JD013892.

    • Search Google Scholar
    • Export Citation
  • Developmental Testbed Center, 2013: Model Evaluation Tools version 4.1 (METv4.1) user’s guide. Developmental Testbed Center, Boulder, CO, 226 pp. [Available online at www.dtcenter.org/met/users/docs/users_guide/MET_Users_Guide_v4.1.pdf.]

  • Douglas, E. M., , Niyogi D. , , Frolking S. , , Yeluripati J. B. , , Pielke R. A. Sr., , Niyogi N. , , Vörösmarty C. J. , , and Mohanty U. C. , 2006: Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian monsoon belt. Geophys. Res. Lett., 33, L14403, doi:10.1029/2006GL026550.

    • Search Google Scholar
    • Export Citation
  • Evans, J. P., , and Zaitchik B. F. , 2008: Modeling the large-scale water balance impact of different irrigation systems. Water Resour. Res., 44, W08448, doi:10.1029/2007WR006671.

    • Search Google Scholar
    • Export Citation
  • Harding, K. J., , and Snyder P. K. , 2012a: Modeling the atmospheric response to irrigation in the Great Plains. Part I: General impacts on precipitation and the energy budget. J. Hydrometeor., 13, 16671686, doi:10.1175/JHM-D-11-098.1.

    • Search Google Scholar
    • Export Citation
  • Harding, K. J., , and Snyder P. K. , 2012b: Modeling the atmospheric response to irrigation in the Great Plains. Part II: The precipitation of irrigated water and changes in precipitation recycling. J. Hydrometeor., 13, 16871703, doi:10.1175/JHM-D-11-099.1.

    • Search Google Scholar
    • Export Citation
  • Huber, D., , Mechem D. , , and Brunsell N. , 2014: The effects of Great Plains irrigation on the surface energy balance, regional circulation, and precipitation. Climate, 2, 103128, doi:10.3390/cli2020103.

    • Search Google Scholar
    • Export Citation
  • Hutson, S. S., , Barber N. L. , , Kenny J. F. , , Linsey K. S. , , Lumia D. S. , , and Maupin M. A. , 2004: Estimated use of water in the United States in 2000. USGS Circular 1268, 46 pp. [Available online at http://pubs.usgs.gov/circ/2004/circ1268/.]

  • Im, E., , Marcella M. P. , , and Eltahir E. A. B. , 2014: Impact of potential large-scale irrigation on the West African monsoon and its dependence on location of irrigated area. J. Climate, 27, 9941009, doi:10.1175/JCLI-D-13-00290.1.

    • Search Google Scholar
    • Export Citation
  • Irmak, A., , Ratcliffe I. , , Ranade P. , , Hubbard K. , , Singh R. K. , , Kamble B. , , and Kjaersgaard J. , 2011: Estimation of land surface evapotranspiration with a satellite remote sensing procedure. Great Plains Res., 21, 7388.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, L., , Ma E. , , and Deng X. , 2014: Impacts of irrigation on the heat fluxes and near-surface temperature in an inland irrigation area of northern China. Energies, 7, 13001317, doi:10.3390/en7031300.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Dirmeyer P. A. , , Hahmann A. N. , , Ijpelaar R. , , Tyahla L. , , Cox P. , , and Suarez M. J. , 2002: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeor.,3, 363–375, doi:10.1175/1525-7541(2002)003<0363:CTDOLA>2.0.CO;2.

  • Kueppers, L. M., , and Snyder M. A. , 2012: Influence of irrigated agriculture on diurnal surface energy and water fluxes, surface climate, and atmospheric circulation in California. Climate Dyn., 38, 10171029, doi:10.1007/s00382-011-1123-0.

    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., , Snyder M. A. , , and Sloan L. C. , 2007: Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett., 34, L03703, doi:10.1029/2006GL028679.

    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., and et al. , 2008: Seasonal temperature responses to land-use change in the western United States. Global Planet. Change, 60, 250264, doi:10.1016/j.gloplacha.2007.03.005.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and et al. , 2006: Land information system : An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., , Peters-Lidard C. D. , , Santanello J. , , Harrison K. , , Liu Y. , , and Shaw M. , 2012: Land Surface Verification Toolkit (LVT)—A generalized framework for land surface model evaluation. Geosci. Model Dev., 5, 869886, doi:10.5194/gmd-5-869-2012.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , and Slingo J. M. , 2005: Weak land–atmosphere coupling strength in HadAM3: The role of soil moisture variability. J. Hydrometeor., 6, 670680, doi:10.1175/JHM445.1.

    • Search Google Scholar
    • Export Citation
  • Leng, G., , Huang M. , , Tang Q. , , Gao H. , , and Leung L. R. , 2014: Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States. J. Hydrometeor., 15, 957972, doi:10.1175/JHM-D-13-049.1.

    • Search Google Scholar
    • Export Citation
  • Lo, M.-H., , and Famiglietti J. S. , 2013: Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett., 40, 301306, doi:10.1002/grl.50108.

    • Search Google Scholar
    • Export Citation
  • Lobell, D., , Bala G. , , Mirin A. , , Phillips T. , , Maxwell R. , , and Rotman D. , 2009: Regional differences in the influence of irrigation on climate. J. Climate, 22, 22482255, doi:10.1175/2008JCLI2703.1.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., , Keeling T. , , Foster S. A. , , and Hubbard K. G. , 2013: Did irrigation impact 20th century air temperature in the high plains aquifer region? Appl. Geogr., 38, 1121, doi:10.1016/j.apgeog.2012.11.002.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Moore, N., , and Rojstaczer S. , 2002: Irrigation’s influence on precipitation: Texas high plains, U.S.A. Geophys. Res. Lett., 29, doi:10.1029/2002GL014940.

    • Search Google Scholar
    • Export Citation
  • NASS, 2009: 2007 census of agriculture: Farm and ranch irrigation survey (2008). Vol. 3, Special Studies, Part 1, Rep. AC-070SS-1, National Agricultural Statistics Service, USDA, 268 pp. [Available online at www.agcensus.usda.gov/Publications/2007/Online_Highlights/Farm_and_Ranch_Irrigation_Survey/.]

  • Oke, T. R., 1978: Boundary Layer Climates. Wiley, 372 pp.

  • Ozdogan, M., , and Gutman G. , 2008: A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US. Remote Sens. Environ., 112, 35203537, doi:10.1016/j.rse.2008.04.010.

    • Search Google Scholar
    • Export Citation
  • Ozdogan, M., , Rodell M. , , Beaudoing H. K. , , and Toll D. L. , 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hydrometeor., 11, 171184, doi:10.1175/2009JHM1116.1.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and et al. , 2015: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environ. Modell. Software, 67, 149159, doi:10.1016/j.envsoft.2015.01.007.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, Y., , Hanasaki N. , , Koirala S. , , Cho J. , , Yeh P. J.-F. , , Kim H. , , Kanae S. , , and Oki T. , 2012: Incorporating anthropogenic water regulation modules into a land surface model. J. Hydrometeor., 13, 255269, doi:10.1175/JHM-D-11-013.1.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., , Huang M. , , Yang B. , , and Berg L. K. , 2013: A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the southern Great Plains. J. Hydrometeor., 14, 700721, doi:10.1175/JHM-D-12-0134.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., , Peters-Lidard C. D. , , Kumar S. V. , , Alonge C. , , and Tao W.-K. , 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599, doi:10.1175/2009JHM1066.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., , Peters-Lidard C. D. , , and Kumar S. V. , 2011a: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, doi:10.1175/JHM-D-10-05014.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and et al. , 2011b: Results from Local Land–Atmosphere Coupling (LoCo) Project. GEWEX News, Vol. 21, No. 4, International GEWEX Project Office, Silver Spring, MD, 79. [Available online at www.gewex.org/gewexnews/Nov2011.pdf.]

  • Santanello, J. A., , Kumar S. V. , , Peters-Lidard C. D. , , Harrison K. , , and Zhou S. , 2013a: Impact of land model calibration on coupled land–atmosphere prediction. J. Hydrometeor., 14, 13731400, doi:10.1175/JHM-D-12-0127.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., , Peters-Lidard C. D. , , Kennedy A. , , and Kumar S. V. , 2013b: Diagnosing the nature of land–atmosphere coupling: A case study of dry/wet extremes in the U.S. southern Great Plains. J. Hydrometeor., 14, 324, doi:10.1175/JHM-D-12-023.1.

    • Search Google Scholar
    • Export Citation
  • Segal, M., , Pan Z. , , Turner R. W. , , and Takle E. S. , 1998: On the potential impact of irrigated areas in North America on summer rainfall caused by large-scale systems. J. Appl. Meteor., 37, 325331, doi:10.1175/1520-0450-37.3.325.

    • Search Google Scholar
    • Export Citation
  • Sivaraman, C., , McFarlane S. , , Chapman E. , , Jensen M. , , Toto T. , , Liu S. , , and Fischer M. , 2013: Planetary boundary layer (PBL) height value added product (VAP): Radisonde retrievals. U.S. DOE Rep. DOE/SC-ARM/TR-132, 36 pp. [Available online at www.arm.gov/publications/tech_reports/doe-sc-arm-tr-132.pdf?id=92.]

  • Skamarock, W. C., , Klemp J. B. , , Dudhia J. , , Gill D. O. , , Barker D. M. , , Wang W. , , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., doi:10.5065/D6DZ069T.

  • Sorooshian, S., , Li J. , , Hsu K. , , and Gao X. , 2011: How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote-sensing data. J. Geophys. Res., 116, D06102, doi:10.1029/2010JD014775.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., , Klemp J. B. , , Dudhia J. , , and Gill D. O. , 2012: Influence of irrigation schemes used in regional climate models on evapotranspiration estimation: Results and comparative studies from California’s Central Valley agricultural regions. J. Geophys. Res., 117, D06107, doi:10.1029/2011JD016978.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., , Peterson S. , , Cuenca R. H. , , Hagimoto Y. , , and Lettenmaier D. P. , 2009: Satellite-based near-real-time estimation of irrigated crop water consumption. J. Geophys. Res., 114, D05114, doi:10.1029/2008JD010854.

    • Search Google Scholar
    • Export Citation
  • Tuinenburg, O. A., , Hutjes R. W. A. , , Stacke T. , , Wiltshire A. , , and Lucas-Picher P. , 2014: Effects of irrigation in India on the atmospheric water budget. J. Hydrometeor., 15, 10281050, doi:10.1175/JHM-D-13-078.1.

    • Search Google Scholar
    • Export Citation
  • Vahmani, P., , and Hogue T. S. , 2014: Incorporating an urban irrigation module into the Noah land surface model coupled with an urban canopy model. J. Hydrometeor., 15, 14401456, doi:10.1175/JHM-D-13-0121.1.

    • Search Google Scholar
    • Export Citation
  • Wei, J., , Dirmeyer P. A. , , Wisser D. , , Bosilovich M. G. , , and Mocko D. M. , 2013: Where does the irrigation water go? An estimate of the contribution of irrigation to precipitation using MERRA. J. Hydrometeor., 14, 275289, doi:10.1175/JHM-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, M. T., , Anderson M. C. , , Zaitchik B. , , Hain C. R. , , Crow W. T. , , Ozdogan M. , , Chun J. A. , , and Evans J. , 2014: Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin. Water Resour. Res., 50, 386408, doi:10.1002/2013WR014194.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., , Evans J. , , and Smith R. B. , 2005: MODIS-derived boundary conditions for a mesoscale climate model: Application to irrigated agriculture in the Euphrates basin. Mon. Wea. Rev., 133, 17271743, doi:10.1175/MWR2947.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 193 193 35
PDF Downloads 147 147 24

Impact of Irrigation Methods on Land Surface Model Spinup and Initialization of WRF Forecasts

View More View Less
  • 1 Department of Geography, University of Delaware, Newark, Delaware, and Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland
  • | 4 Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

In the United States, irrigation represents the largest consumptive use of freshwater and accounts for approximately one-third of total water usage. Irrigation impacts soil moisture and can ultimately influence clouds and precipitation through land–planetary boundary layer (PBL) coupling processes. This study utilizes NASA’s Land Information System (LIS) and the NASA Unified Weather Research and Forecasting Model (NU-WRF) framework to investigate the effects of drip, flood, and sprinkler irrigation methods on land–atmosphere interactions, including land–PBL coupling and feedbacks at the local scale. To initialize 2-day, 1-km WRF forecasts over the central Great Plains in a drier-than-normal (2006) and a wetter-than-normal year (2008), 5-yr irrigated LIS spinups were used. The offline and coupled simulation results show that regional irrigation impacts are sensitive to time, space, and method and that irrigation cools and moistens the surface over and downwind of irrigated areas, ultimately resulting in both positive and negative feedbacks on the PBL depending on the time of day and background climate conditions. Furthermore, the results portray the importance of both irrigation method physics and correct representation of several key components of land surface models, including accurate and timely land-cover and crop-type classification, phenology (greenness), and soil moisture anomalies (through a land surface model spinup) in coupled prediction models.

Corresponding author address: Patricia M. Lawston, Department of Geography, University of Delaware, 216 Pearson Hall, Newark, DE 19716. E-mail: pmlawsto@udel.edu

Abstract

In the United States, irrigation represents the largest consumptive use of freshwater and accounts for approximately one-third of total water usage. Irrigation impacts soil moisture and can ultimately influence clouds and precipitation through land–planetary boundary layer (PBL) coupling processes. This study utilizes NASA’s Land Information System (LIS) and the NASA Unified Weather Research and Forecasting Model (NU-WRF) framework to investigate the effects of drip, flood, and sprinkler irrigation methods on land–atmosphere interactions, including land–PBL coupling and feedbacks at the local scale. To initialize 2-day, 1-km WRF forecasts over the central Great Plains in a drier-than-normal (2006) and a wetter-than-normal year (2008), 5-yr irrigated LIS spinups were used. The offline and coupled simulation results show that regional irrigation impacts are sensitive to time, space, and method and that irrigation cools and moistens the surface over and downwind of irrigated areas, ultimately resulting in both positive and negative feedbacks on the PBL depending on the time of day and background climate conditions. Furthermore, the results portray the importance of both irrigation method physics and correct representation of several key components of land surface models, including accurate and timely land-cover and crop-type classification, phenology (greenness), and soil moisture anomalies (through a land surface model spinup) in coupled prediction models.

Corresponding author address: Patricia M. Lawston, Department of Geography, University of Delaware, 216 Pearson Hall, Newark, DE 19716. E-mail: pmlawsto@udel.edu
Save