• AghaKouchak, A., , Behrangi A. , , Sorooshian S. , , Hsu K. , , and Amitai E. , 2011: Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J. Geophys. Res., 116, D02115, doi:10.1029/2010JD014741.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., , Mehran A. , , Norouzi H. , , and Behrangi A. , 2012: Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett., 39, L09406, doi:10.1029/2012GL051592.

    • Search Google Scholar
    • Export Citation
  • Alsdorf, D. E., , Rodríguez E. , , and Lettenmaier D. P. , 2007: Measuring surface water from space. Rev. Geophys., 45, RG2002, doi:10.1029/2006RG000197.

    • Search Google Scholar
    • Export Citation
  • Ashley, S., , and Ashley W. , 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 806818, doi:10.1175/2007JAMC1611.1.

    • Search Google Scholar
    • Export Citation
  • Bates, P. D., , Horritt M. S. , , Smith C. N. , , and Mason D. , 1997: Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrol. Processes, 11, 17771795, doi:10.1002/(SICI)1099-1085(199711)11:14<1777::AID-HYP543>3.0.CO;2-E.

    • Search Google Scholar
    • Export Citation
  • Begnudelli, L., , and Sanders B. F. , 2006: Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying. J. Hydraul. Eng., 132, 371384, doi:10.1061/(ASCE)0733-9429(2006)132:4(371).

    • Search Google Scholar
    • Export Citation
  • Begnudelli, L., , and Sanders B. F. , 2007: Conservative wetting and drying methodology for quadrilateral grid finite volume models. J. Hydraul. Eng., 133, 312322, doi:10.1061/(ASCE)0733-9429(2007)133:3(312).

    • Search Google Scholar
    • Export Citation
  • Behrangi A., , Khakbaz B. , , Jaw T. C. , , AghaKouchak A. , , Hsu K. , , and Sorooshian S. , 2011: Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol., 397, 225237, doi:10.1016/j.jhydrol.2010.11.043.

    • Search Google Scholar
    • Export Citation
  • Bjerklie, D. M., , Moller D. , , Smith L. C. , , and Dingman S. L. , 2005: Estimating discharge in rivers using remotely sensed hydraulic information. J. Hydrol., 309, 191209, doi:10.1016/j.jhydrol.2004.11.022.

    • Search Google Scholar
    • Export Citation
  • Borga, M., , Anagnostou E. N. , , Bloschl G. , , and Creutin J. D. , 2011: Flash flood forecasting, warning and risk management: The HYDRATE project. Environ. Sci. Policy, 14, 834844, doi:10.1016/j.envsci.2011.05.017.

    • Search Google Scholar
    • Export Citation
  • Boryan, C., , Yang Z. , , Mueller R. , , and Craig M. , 2011: Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int., 26, 341358, doi:10.1080/10106049.2011.562309.

    • Search Google Scholar
    • Export Citation
  • Brakenridge, G. R., , Nghiem S. V. , , Anderson E. , , and Mic R. , 2007: Orbital microwave measurement of river discharge and ice status. Water Resour. Res., 43, W04405, doi:10.1029/2006WR005238.

    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1959: Open-Channel Hydraulics. McGraw-Hill, 680 pp.

  • Collier, C. G., 2007: Flash flood forecasting: What are the limits of predictability? Quart. J. Roy. Meteor. Soc., 133, 323, doi:10.1002/qj.29.

    • Search Google Scholar
    • Export Citation
  • Cook, A., , and Merwade V. , 2009: Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. J. Hydrol., 377, 131142, doi:10.1016/j.jhydrol.2009.08.015.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., , Erlingis J. M. , , Hong Y. , , and Wells E. , 2012: Evaluation of tools used for monitoring and forecasting flash floods in the United States. Wea. Forecasting, 27, 158173, doi:10.1175/WAF-D-10-05043.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , Hsu K. , , Sorooshian S. , , and Gao X. , 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 18341852, doi:10.1175/JAM2173.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , Adler R. F. , , Negri A. , , and Huffman G. J. , 2007a: Flood and landslide applications of near real-time satellite rainfall products. Nat. Hazards, 43, 285294, doi:10.1007/s11069-006-9106-x.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , Gochis D. , , Chen J. T. , , Hsu K. L. , , and Sorooshian S. , 2007b: Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeor., 8, 469482, doi:10.1175/JHM574.1.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , Siddique-E-Akbor A. H. , , Mazumder L. C. , , ShahNewaz S. M. , , Biancamaria S. , , Lee H. , , and Shum C. K. , 2014a: Proof of concept of an altimeter-based river forecasting system for transboundary flow inside Bangladesh. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens.,7, 587–601, doi:10.1109/JSTARS.2013.2283402.

  • Hossain, F., and et al. , 2014b: Crossing the “Valley of Death”: Lessons learned from implementing an operational satellite-based flood forecasting system. Bull. Amer. Meteor. Soc.,95, 1201–1207, doi:10.1175/BAMS-D-13-00176.1.

  • Hsu, K., , Gao X. , , Sorooshian S. , , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., , Sellars S. , , Nguyen P. , , Braithwaite D. , , and Chu W. , 2013: G-WADI PERSIANN-CCS GeoServer for extreme precipitation event monitoring. Sci. Cold Arid Reg., 5 (1), 615.

    • Search Google Scholar
    • Export Citation
  • Indian National Remote Sensing Agency, 2003: IRS-P6 data user’s manual. 141 pp. [Available online at www.euromap.de/download/P6_data_user_handbook.pdf.]

  • Jensen, J. R., 2000: Remote Sensing of the Environment: An Earth Resource Perspective. Prince Hall, 544 pp.

  • Johnson, D., , and Lindsey M. , 2008: AWiFS data: Helping reinforce crop acreage statistics within June 2008’s flooded areas. Integrating ResourceSat-LISS and AWiFS Data into Multi-Sensor Solutions Seminar, Greenbelt, MD, USDA. [Available online at www.nass.usda.gov/Education_and_Outreach/Reports,_Presentations_and_Conferences/Presentations/Johnson_FASSeminar08.pdf.]

  • Khan, S. I., , Hong Y. , , Gourley J. J. , , Khattak M. U. , , and Groeve T. D. , 2014: Multi-sensor imaging and space–ground cross-validation for 2010 flood along Indus River, Pakistan. Remote Sens., 6, 23932407, doi:10.3390/rs6032393.

    • Search Google Scholar
    • Export Citation
  • Koren, V., , Smith M. , , and Duan Q. , 2003: Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall–runoff models. Calibration of Watershed Models, Q. Duan et al., Eds., Water Science and Application Series, Vol. 6, Amer. Geophys. Union, 239–254, doi:10.1002/9781118665671.ch18.

  • Koren, V., , Reed S. , , Smith M. , , Zhang Z. , , and Seo D. J. , 2004: Hydrology laboratory modeling system (HL-RMS) of the US national weather service. J. Hydrol., 291, 297318, doi:10.1016/j.jhydrol.2003.12.039.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W., , Seo B. C. , , Goska R. , , Demir I. , , and Elsaadani M. , 2013: Precipitation datasets the GPM Iowa Flood Studies (IFLoodS) field experiment. Geophysical Research Abstracts, Vol. 15, Abstract EGU2013-11303. [Available online at http://meetingorganizer.copernicus.org/EGU2013/EGU2013-11303.pdf.]

  • Linhart, S. M., , and Eash D. A. , 2010: Floods of May 30 to June 15, 2008, in the Iowa River and Cedar River basins, eastern Iowa. USGS Open-File Rep. 2010-1190, 99 pp. [Available online at http://pubs.usgs.gov/of/2010/1190/pdf/of2010-1190.pdf.]

  • National Weather Service, 2011: Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) User Manual V. 3.2.0. National Weather Service Rep., 79 pp.

  • National Weather Service, 2012: Summary of Natural Hazard Statistics for 2011 in the United States. Accessed 10 September 2014. [Available online at www.nws.noaa.gov/os/hazstats/sum11.pdf.]

  • Nguyen, P., , Sorooshian S. , , Hsu K. , , AghaKouchak A. , , Sanders B. , , Smith M. , , and Koren V. , 2012: Improving flash flood forecasting through coupling of a distributed hydrologic rainfall–runoff model (HL-RDHM) with a hydraulic model (BreZo). 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H43F-1429. [Available online at http://fallmeeting.agu.org/2012/eposters/eposter/h43f-1429/.]

  • Nguyen, P., , Sorooshian S. , , Hsu K. , , AghaKouchak A. , , and Sanders B. , 2013: Modeling the Upper Little Missouri River flash flood 2010 using a coupled distributed hydrologic–hydraulic model. CSDMS Annual Meeting 2013, Boulder, CO, CSDMS. [Available online at http://csdms.colorado.edu/mediawiki/images/CSDMS2013_poster_PhuNguyen.pdf.]

  • Nguyen, P., , Sellars S. , , Thorstensen A. , , Tao Y. , , Ashouri H. , , Braithwaite D. , , Hsu K. , , and Sorooshian S. , 2014: Satellites Track Precipitation of Super Typhoon Haiyan. Eos, Trans. Amer. Geophys. Union,95, 133–135, doi:10.1002/2014EO160002.

  • Sanders, B. F., 2007: Evaluation of on-line DEMs for flood inundation modeling. Adv. Water Resour., 30, 18311843, doi:10.1016/j.advwatres.2007.02.005.

    • Search Google Scholar
    • Export Citation
  • Shewchuk, J. R., 1996: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. Lect. Notes Comput. Sci., 1148, 203222, doi:10.1007/BFb0014497.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , Baeck M. L. , , Villarini G. , , Wright D. B. , , and Krajewski W. , 2013: Extreme flood response: The June 2008 flooding in Iowa. J. Hydrometeor., 14, 18101825, doi:10.1175/JHM-D-12-0191.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , Qin D. , , Manning M. , , Chen Z. , , Marquis M. , , Averyt K. , , Tignor M. , , and Miller H. L. Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Sorooshian, S., , Hsu K. , , Gao X. , , Gupta H. , , Imam B. , , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., and et al. , 2011: Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Amer. Meteor. Soc., 92, 13531357, doi:10.1175/2011BAMS3158.1.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., , Nguyen P. , , Sellars S. , , Braithwaite D. , , AghaKouchak A. , , and Hsu K. , 2014: Satellite-based remote sensing estimation of precipitation for early warning systems. Extreme Natural Hazards, Disaster Risks and Societal Implications, A. Ismail-Zadeh et al., Eds., Special Publications of the International Union of Geodesy and Geophysics, No. 1, Cambridge University Press, 99–112, doi:10.1017/CBO9781139523905.011.

  • WMO, 2011: Manual on flood forecasting and warning. WMO Rep. 1072, 140 pp. [Available online at www.wmo.int/pages/prog/hwrp/publications/flood_forecasting_warning/WMO%201072_en.pdf.]

  • Wu, H., , Adler R. F. , , Tian Y. , , Huffman G. J. , , Li H. , , and Wang J. , 2014: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res., 50, 26932717, doi:10.1002/2013WR014710.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 233 233 33
PDF Downloads 215 215 38

Flood Forecasting and Inundation Mapping Using HiResFlood-UCI and Near-Real-Time Satellite Precipitation Data: The 2008 Iowa Flood

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California
© Get Permissions
Restricted access

Abstract

Floods are among the most devastating natural hazards in society. Flood forecasting is crucially important in order to provide warnings in time to protect people and properties from such disasters. This research applied the high-resolution coupled hydrologic–hydraulic model from the University of California, Irvine, named HiResFlood-UCI, to simulate the historical 2008 Iowa flood. HiResFlood-UCI was forced with the near-real-time Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Cloud Classification System (PERSIANN-CCS) and NEXRAD Stage 2 precipitation data. The model was run using the a priori hydrologic parameters and hydraulic Manning n values from lookup tables. The model results were evaluated in two aspects: point comparison using USGS streamflow and areal validation of inundation maps using USDA’s flood extent maps derived from Advanced Wide Field Sensor (AWiFS) 56-m resolution imagery. The results show that the PERSIANN-CCS simulation tends to capture the observed hydrograph shape better than Stage 2 (minimum correlation of 0.86 for PERSIANN-CCS and 0.72 for Stage 2); however, at most of the stream gauges, Stage 2 simulation provides more accurate estimates of flood peaks compared to PERSIANN-CCS (49%–90% bias reduction from PERSIANN-CCS to Stage 2). The simulation in both cases shows a good agreement (0.67 and 0.73 critical success index for Stage 2 and PERSIANN-CCS simulations, respectively) with the AWiFS flood extent. Since the PERSIANN-CCS simulation slightly underestimated the discharge, the probability of detection (0.93) is slightly lower than that of the Stage 2 simulation (0.97). As a trade-off, the false alarm rate for the PERSIANN-CCS simulation (0.23) is better than that of the Stage 2 simulation (0.31).

Corresponding author address: Phu Nguyen, Dept. of Civil and Environmental Engineering, E/4130 Engineering Gateway, Office EH 5308, Mail Code 2175, Irvine, CA 92697. E-mail: ndphu@uci.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Abstract

Floods are among the most devastating natural hazards in society. Flood forecasting is crucially important in order to provide warnings in time to protect people and properties from such disasters. This research applied the high-resolution coupled hydrologic–hydraulic model from the University of California, Irvine, named HiResFlood-UCI, to simulate the historical 2008 Iowa flood. HiResFlood-UCI was forced with the near-real-time Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Cloud Classification System (PERSIANN-CCS) and NEXRAD Stage 2 precipitation data. The model was run using the a priori hydrologic parameters and hydraulic Manning n values from lookup tables. The model results were evaluated in two aspects: point comparison using USGS streamflow and areal validation of inundation maps using USDA’s flood extent maps derived from Advanced Wide Field Sensor (AWiFS) 56-m resolution imagery. The results show that the PERSIANN-CCS simulation tends to capture the observed hydrograph shape better than Stage 2 (minimum correlation of 0.86 for PERSIANN-CCS and 0.72 for Stage 2); however, at most of the stream gauges, Stage 2 simulation provides more accurate estimates of flood peaks compared to PERSIANN-CCS (49%–90% bias reduction from PERSIANN-CCS to Stage 2). The simulation in both cases shows a good agreement (0.67 and 0.73 critical success index for Stage 2 and PERSIANN-CCS simulations, respectively) with the AWiFS flood extent. Since the PERSIANN-CCS simulation slightly underestimated the discharge, the probability of detection (0.93) is slightly lower than that of the Stage 2 simulation (0.97). As a trade-off, the false alarm rate for the PERSIANN-CCS simulation (0.23) is better than that of the Stage 2 simulation (0.31).

Corresponding author address: Phu Nguyen, Dept. of Civil and Environmental Engineering, E/4130 Engineering Gateway, Office EH 5308, Mail Code 2175, Irvine, CA 92697. E-mail: ndphu@uci.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Save