Lagrangian Analyses of Rainfall Structure and Evolution for Organized Thunderstorm Systems in the Urban Corridor of the Northeastern United States

June K. Yeung Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by June K. Yeung in
Current site
Google Scholar
PubMed
Close
,
James A. Smith Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A. Smith in
Current site
Google Scholar
PubMed
Close
,
Mary Lynn Baeck Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Mary Lynn Baeck in
Current site
Google Scholar
PubMed
Close
, and
Gabriele Villarini IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Gabriele Villarini in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, a climatology of the structure and evolution of rainfall for organized thunderstorm systems in the urban corridor of the northeastern United States is developed. These storm systems are major agents of flash flooding for urban regions of the northeastern United States and, more generally, for the United States east of the Rocky Mountains. The analyses are motivated by problems that center on characterizing flash flood hazards. The authors focus on spatial heterogeneities of rainfall associated with urbanization in a region of complex landscape including mountainous terrain and land–water boundaries along the geometrically complex coastline of the New York City–New Jersey metropolitan region. The sample of storms selected for investigation consists of the 50 days from April to September 2001–09 with the largest cloud-to-ground lightning flash density derived from National Lightning Detection Network (NLDN) observations over the study region. Storm-tracking analyses of 3D radar reflectivity fields are performed for the 50 storm days and used to develop a Lagrangian climatology of storm structure and evolution for the study region. Rainfall analyses for the 50 storm days are based on high-resolution (1 km, 15 min) bias-corrected radar rainfall fields developed from the Hydro-NEXRAD system. The analyses suggest that complex terrain and land–water boundaries have large impacts on Lagrangian storm properties. Areas of increased heavy rainfall and lightning flash density over New York City were identified. The authors found evidence for changing storm structure as thunderstorms pass over New York City, but little evidence that thunderstorms split as they approach New York City.

Corresponding author address: James Smith, Department of Civil and Environmental Engineering, Princeton University, Engineering Quadrangle, Olden Street, Princeton, NJ 08540. E-mail: jsmith@princeton.edu

Abstract

In this study, a climatology of the structure and evolution of rainfall for organized thunderstorm systems in the urban corridor of the northeastern United States is developed. These storm systems are major agents of flash flooding for urban regions of the northeastern United States and, more generally, for the United States east of the Rocky Mountains. The analyses are motivated by problems that center on characterizing flash flood hazards. The authors focus on spatial heterogeneities of rainfall associated with urbanization in a region of complex landscape including mountainous terrain and land–water boundaries along the geometrically complex coastline of the New York City–New Jersey metropolitan region. The sample of storms selected for investigation consists of the 50 days from April to September 2001–09 with the largest cloud-to-ground lightning flash density derived from National Lightning Detection Network (NLDN) observations over the study region. Storm-tracking analyses of 3D radar reflectivity fields are performed for the 50 storm days and used to develop a Lagrangian climatology of storm structure and evolution for the study region. Rainfall analyses for the 50 storm days are based on high-resolution (1 km, 15 min) bias-corrected radar rainfall fields developed from the Hydro-NEXRAD system. The analyses suggest that complex terrain and land–water boundaries have large impacts on Lagrangian storm properties. Areas of increased heavy rainfall and lightning flash density over New York City were identified. The authors found evidence for changing storm structure as thunderstorms pass over New York City, but little evidence that thunderstorms split as they approach New York City.

Corresponding author address: James Smith, Department of Civil and Environmental Engineering, Princeton University, Engineering Quadrangle, Olden Street, Princeton, NJ 08540. E-mail: jsmith@princeton.edu
Save
  • Baeck, M. L., and Smith J. A. , 1995: Climatological analysis of manually digitized radar data for the United States east of the Rocky Mountains. Water Resour. Res., 31, 30333049, doi:10.1029/95WR01946.

    • Search Google Scholar
    • Export Citation
  • Baeck, M. L., and Smith J. A. , 1998: Rainfall estimation by the WSR-88D for heavy rainfall events. Wea. Forecasting, 13, 416436, doi:10.1175/1520-0434(1998)013<0416:REBTWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., and Thompson W. T. , 1981: Effects of frictionally retarded sea breeze and synoptic frontal passages on sulfur dioxide concentrations in New York City. J. Appl. Meteor., 20, 843858, doi:10.1175/1520-0450(1981)020,0843:EOFRSB.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., and LeRoy M. , 1990: Urban barrier effects on convectiveand frontal thunderstorms. Extended Abstracts, Fourth Conf. on Mesoscale Processes, Boulder, CO, Amer. Meteor. Soc., 120–121.

  • Carter, M., Shepherd J. M. , Burian S. , and Jeyachandran I. , 2012: Integration of lidar data into a coupled mesoscale–land surface model: A theoretical assessment of sensitivity of urban–coastal mesoscale circulations to urban canopy parameters. J. Atmos. Oceanic Technol., 29, 328346, doi:10.1175/2011JTECHA1524.1.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1988: Climatography of thunder events in the conterminous United States. Part I: Temporal aspects. J. Climate, 1, 389398, doi:10.1175/1520-0442(1988)001<0389:COTEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and Yuter S. E. , 2007: The impact of coastal boundaries and small hills on the precipitation distribution across southern Connecticut and Long Island, New York. Mon. Wea. Rev., 135, 933954, doi:10.1175/MWR3320.1.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and Novak D. R. , 2010: The New York Bight jet: Climatology and dynamical evolution. Mon. Wea. Rev., 138, 23852404, doi:10.1175/2009MWR3231.1.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Anthes R. , 1992: Storm and Cloud Dynamics.Academic Press, 883 pp.

  • Dixon, M., and Wiener G. , 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, doi:10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., and Mote T. L. , 2003: Patterns and causes of Atlanta’s urban heat island–initiated precipitation. J. Appl. Meteor., 42, 12731284, doi:10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., Brooks H. E. , and Maddox R. A. , 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holt, T., and Pullen J. , 2007: Urban canopy modeling of the New York City metropolitan area: A comparison and validation of single- and multilayer parameterizations. Mon. Wea. Rev., 135, 19061930, doi:10.1175/MWR3372.1.

    • Search Google Scholar
    • Export Citation
  • Javier, J. R. N., Smith J. A. , England J. , Baeck M. L. , Steiner M. , and Ntelekos A. A. , 2007: Climatology of extreme rainfall and flooding from orographic thunderstorm systems in the upper Arkansas River basin. Water Resour. Res., 43, W10410, doi:10.1029/2006WR005093.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2008: Hydro-NEXRAD: An updated overview and metadata analysis. World Environmental and Water Resources Congress 2008: Ahupua’A, R. W. Babcock Jr. and R. Walton, Eds., ASCE, 1–10, doi:10.1061/40976(316)393.

  • Krajewski, W. F., and Coauthors, 2011: Towards better utilization of NEXRAD data in hydrology: An overview of Hydro-NEXRAD. J. Hydroinf.,13, 255–266, doi:10.2166/hydro.2010.056.

  • Le Cam, L. M., 1961: A stochastic description of precipitation. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 3, J. Neyman, Ed., University of California Press, 165–186.

  • Lombardo, K. A., and Colle B. A. , 2010: The spatial and temporal distribution of organized convective structures over the Northeast and their ambient conditions. Mon. Wea. Rev., 138, 44564474, doi:10.1175/2010MWR3463.1.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and Colle B. A. , 2011: Convective storm structures and ambient conditions associated with severe weather over the northeast United States. Wea. Forecasting, 26, 940956, doi:10.1175/WAF-D-11-00002.1.

    • Search Google Scholar
    • Export Citation
  • Miao, S. G., Chen F. , Li Q. C. , and Fan S. Y. , 2011: Impacts of urban processes and urbanization of summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteor. Climatol., 50, 806825, doi:10.1175/2010JAMC2513.1.

    • Search Google Scholar
    • Export Citation
  • Mote, T. L., Lacke M. C. , and Shepherd J. M. , 2007: Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophys. Res. Lett., 34, L20710, doi:10.1029/2007GL031903.

    • Search Google Scholar
    • Export Citation
  • Murray, J. C., and Colle B. A. , 2011: The spatial and temporal variability of convective storms over the northeast United States during the warm season. Mon. Wea. Rev., 139, 9921012, doi:10.1175/2010MWR3316.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and Zipser E. J. , 2003: The diurnal cycle of rainfall and convective intensity according to TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., Pyle P. , Lei M. , Arya S. P. , Kishtawal C. M. , Shepherd M. , Chen F. , and Wolfe B. , 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, doi:10.1175/2010JAMC1836.1.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., Smith J. A. , and Krajewski W. F. , 2007: Climatological analyses of thunderstorms and flash floods in the Baltimore metropolitan region. J. Hydrometeor., 8, 88101, doi:10.1175/JHM558.1.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., Smith J. A. , Baeck M. L. , Krajewski W. F. , Miller A. J. , and Goska R. , 2008: Extreme hydrometeorological events and the urban environment: Dissecting the 7 July 2004 thunderstorm over the Baltimore, MD, metropolitan region. Water Resour. Res., 44, W08446, doi:10.1029/2007WR006346.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and Huffines G. R. , 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193, doi:10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peleg, N., and Morin E. , 2012: Convective rain cells: Radar-derived spatiotemporal characteristics and synoptic patterns over the eastern Mediterranean. J. Geophys. Res.,117, D15116, doi:10.1029/2011JD017353.

  • Pullen, J., Holt T. , Blumberg A. F. , and Bornstein R. D. , 2007: Atmospheric response to local upwelling in the vicinity of the New York–New Jersey harbor. J. Appl. Meteor. Climatol., 46, 10311052, doi:10.1175/JAM2511.1.

    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., Smith J. A. , and Bou-Zeid E. , 2015: On the climatology of precipitable water and water vapor flux in the mid-Atlantic region of the United States. J. Hydrometeor., 16, 7087, doi:10.1175/JHM-D-14-0030.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and Johnson R. H. , 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 69–85, doi:10.1175/WAF900.1.

    • Search Google Scholar
    • Export Citation
  • Seo, B. C., Krajewski W. F. , Kruger A. , Domaszczynski P. , Smith J. A. , and Steiner M. , 2011: Radar-rainfall estimation algorithms of Hydro-NEXRAD. J. Hydroinf., 13, 277291, doi:10.2166/hydro.2010.003.

    • Search Google Scholar
    • Export Citation
  • Shem, W., and Shepherd M. , 2009: On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res., 92, 172189, doi:10.1016/j.atmosres.2008.09.013.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of the current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, doi:10.1175/EI156.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and Karr A. F. , 1985: Statistical inference for point process models of rainfall. Water Resour. Res., 21, 7379, doi:10.1029/WR021i001p00073.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and Krajewski W. F. , 1987: Statistical modeling of rainfall using radar and raingage observations. Water Resour. Res., 23, 18931900, doi:10.1029/WR023i010p01893.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and Karr A. F. , 1990: A statistical model of extreme storm rainfall. J. Geophys. Res., 95, 20832092, doi:10.1029/JD095iD03p02083.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and Krajewski W. F. , 1991: Estimation of the mean field bias of radar rainfall estimates. J. Appl. Meteor., 30, 397412, doi:10.1175/1520-0450(1991)030<0397:EOTMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Seo D. J. , Baeck M. L. , and Hudlow M. D. , 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32, 20352045, doi:10.1029/96WR00270.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Baeck M. L. , Zhang Y. , and Doswell C. A. III, 2001: Extreme rainfall and flooding from supercell thunderstorms. J. Hydrometeor., 2, 469489, doi:10.1175/1525-7541(2001)002<0469:ERAFFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Miller A. J. , Baeck M. L. , Nelson P. A. , Fisher G. T. , and Meierdiercks K. L. , 2005: Extraordinary flood response of a small urban watershed to short-duration convective rainfall. J. Hydrometeor., 6, 599617, doi:10.1175/JHM426.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Baeck M. L. , Villarini G. , Welty C. , Miller A. J. , and Krajewski W. F. , 2012: Analyses of a long-term, high-resolution radar rainfall data set for the Baltimore metropolitan region. Water Resour. Res.,48, W04504, doi:10.1029/2011WR010641.

  • Tapia, A., Smith J. A. , and Dixon M. , 1998: Estimation of convective rainfall from lightning observations. J. Appl. Meteor., 37, 14971509, doi:10.1175/1520-0450(1998)037<1497:EOCRFL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, W., Holt T. , and Pullen J. , 2007: Investigation of a sea breeze front in an urban environment. Quart. J. Roy. Meteor. Soc., 133, 579594, doi:10.1002/qj.52.

    • Search Google Scholar
    • Export Citation
  • U.S. Census Bureau, 2010: State and county quick facts: New Jersey. Accessed 5 May 2015. [Available online at http://quickfacts.census.gov/qfd/states/34000.html.]

  • Villarini, G., and Smith J. A. , 2013: Spatial and temporal variability of cloud-to-ground lightning over the continental US during the period 1995–2010. Atmos. Res., 124, 137148, doi:10.1016/j.atmosres.2012.12.017.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, doi:10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wasula, A. C., Bosart L. F. , and LaPenta K. D. , 2002: The influence of terrain on the severe weather distribution across interior eastern New York and western New England. Wea. Forecasting, 17, 12771289, doi:10.1175/1520-0434(2002)017<1277:TIOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waymire, E., Gupta V. K. , and Rodriguez-Iturbe I. , 1984: A spectral theory of rainfall intensity at the meso-beta scale. Water Resour. Res., 20, 14531465, doi:10.1029/WR020i010p01453.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and Mueller C. K. , 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8, 113131, doi:10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winkler, J. A., Skeeter B. R. , and Yamamoto P. Y. , 1988: Seasonal variation and diurnal characteristics of heavy hourly precipitation across the United States. Mon. Wea. Rev., 116, 16411658, doi:10.1175/1520-0493(1988)116<1641:SVITDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wright, D. B., Smith J. A. , Villarini G. , and Baeck M. L. , 2012: Hydroclimatology of flash flooding in Atlanta. Water Resour. Res., 48, W04524, doi:10.1029/2011WR011371.

    • Search Google Scholar
    • Export Citation
  • Wright, D. B., Smith J. A. , and Baeck M. L. , 2014a: Flood frequency analysis using radar rainfall fields and stochastic storm transposition. Water Resour. Res., 50, 15921615, doi:10.1002/2013WR014224.

    • Search Google Scholar
    • Export Citation
  • Wright, D. B., Smith J. A. , Villarini G. , and Baeck M. L. , 2014b: Long-term, high-resolution, radar rainfall records for urban hydrology. J. Amer. Water Resour. Assoc., 50, 713734, doi:10.1111/jawr.12139.

    • Search Google Scholar
    • Export Citation
  • Yang, L., Smith J. A. , Wright D. B. , Villarini G. , Tian F. , and Hu H. , 2013: Urbanization and climate change: An examination of nonstationarities in flood frequency. J. Hydrometeor.,14, 1791–1809, doi:10.1175/JHM-D-12-095.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 345 103 9
PDF Downloads 278 77 6