Evaluation of Regional-Scale River Depth Simulations Using Various Routing Schemes within a Hydrometeorological Modeling Framework for the Preparation of the SWOT Mission

Vincent Häfliger * CNRM-GAME, UMR 3589, Météo-France, CNRS, Toulouse, France
+Centre National d’Études Spatiales, Toulouse, France

Search for other papers by Vincent Häfliger in
Current site
Google Scholar
PubMed
Close
,
Eric Martin * CNRM-GAME, UMR 3589, Météo-France, CNRS, Toulouse, France

Search for other papers by Eric Martin in
Current site
Google Scholar
PubMed
Close
,
Aaron Boone * CNRM-GAME, UMR 3589, Météo-France, CNRS, Toulouse, France

Search for other papers by Aaron Boone in
Current site
Google Scholar
PubMed
Close
,
Florence Habets #UMR 7619 METIS, CNRS, UPMC, Paris, France

Search for other papers by Florence Habets in
Current site
Google Scholar
PubMed
Close
,
Cédric H. David @Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Cédric H. David in
Current site
Google Scholar
PubMed
Close
,
Pierre-A. Garambois &Université de Toulouse, INPT, UPS, Institut de Mécanique des Fluides de Toulouse, Toulouse, France

Search for other papers by Pierre-A. Garambois in
Current site
Google Scholar
PubMed
Close
,
Hélène Roux &Université de Toulouse, INPT, UPS, Institut de Mécanique des Fluides de Toulouse, Toulouse, France

Search for other papers by Hélène Roux in
Current site
Google Scholar
PubMed
Close
,
Sophie Ricci ** CERFACS-URA 1875, Toulouse, France

Search for other papers by Sophie Ricci in
Current site
Google Scholar
PubMed
Close
,
Lucie Berthon ** CERFACS-URA 1875, Toulouse, France

Search for other papers by Lucie Berthon in
Current site
Google Scholar
PubMed
Close
,
Anthony Thévenin ** CERFACS-URA 1875, Toulouse, France

Search for other papers by Anthony Thévenin in
Current site
Google Scholar
PubMed
Close
, and
Sylvain Biancamaria ++CNRS, LEGOS, UMR 5566-CNRS-CNES-IRD-Université Toulouse III, Toulouse, France

Search for other papers by Sylvain Biancamaria in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Surface Water and Ocean Topography (SWOT) mission will provide free water surface elevations, slopes, and river widths for rivers wider than 50 m. Models must be prepared to use this new finescale information by explicitly simulating the link between runoff and the river channel hydraulics. This study assesses one regional hydrometeorological model’s ability to simulate river depths. The Garonne catchment in southwestern France (56 000 km2) has been chosen for the availability of operational gauges in the river network and finescale hydraulic models over two reaches of the river. Several routing schemes, ranging from the simple Muskingum method to time-variable parameter kinematic and diffusive waves schemes, are tested. The results show that the variable flow velocity schemes are advantageous for discharge computations when compared to the original Muskingum routing method. Additionally, comparisons between river depth computations and in situ observations in the downstream Garonne River led to root-mean-square errors of 50–60 cm in the improved Muskingum method and 40–50 cm in the kinematic–diffusive wave method. The results also highlight SWOT’s potential to improve the characterization of hydrological processes for subbasins larger than 10 000 km2, the importance of an accurate digital elevation model, and the need for spatially varying hydraulic parameters.

Corresponding author address: Vincent Häfliger, CNRM-GAME, UMR 3589, Météo-France, CNRS, 42 av. Gaspard Coriolis, 31057 Toulouse, France. E-mail: vincent.haefliger@yahoo.fr

Abstract

The Surface Water and Ocean Topography (SWOT) mission will provide free water surface elevations, slopes, and river widths for rivers wider than 50 m. Models must be prepared to use this new finescale information by explicitly simulating the link between runoff and the river channel hydraulics. This study assesses one regional hydrometeorological model’s ability to simulate river depths. The Garonne catchment in southwestern France (56 000 km2) has been chosen for the availability of operational gauges in the river network and finescale hydraulic models over two reaches of the river. Several routing schemes, ranging from the simple Muskingum method to time-variable parameter kinematic and diffusive waves schemes, are tested. The results show that the variable flow velocity schemes are advantageous for discharge computations when compared to the original Muskingum routing method. Additionally, comparisons between river depth computations and in situ observations in the downstream Garonne River led to root-mean-square errors of 50–60 cm in the improved Muskingum method and 40–50 cm in the kinematic–diffusive wave method. The results also highlight SWOT’s potential to improve the characterization of hydrological processes for subbasins larger than 10 000 km2, the importance of an accurate digital elevation model, and the need for spatially varying hydraulic parameters.

Corresponding author address: Vincent Häfliger, CNRM-GAME, UMR 3589, Météo-France, CNRS, 42 av. Gaspard Coriolis, 31057 Toulouse, France. E-mail: vincent.haefliger@yahoo.fr
Save
  • Alkama, R., and Coauthors, 2010: Global evaluation of the ISBA–TRIP continental hydrological system. Part I: Comparison to GRACE terrestrial water storage estimates and in situ river discharges. J. Hydrometeor., 11, 583600, doi:10.1175/2010JHM1211.1.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., Clark E. A. , Lettenmaier D. P. , and Alsdorf D. E. , 2007: Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophys. Res. Lett., 34, L10403, doi:10.1029/2007GL029721.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Boer G. J. , 1999: A variable velocity flow routing algorithm for GCMs. J. Geophys. Res., 104, 30 96530 979, doi:10.1029/1999JD900905.

    • Search Google Scholar
    • Export Citation
  • Bates, P. D., and De Roo A. P. J. , 2000: A simple raster-based model for flood inundation simulation. J. Hydrol., 236, 5477, doi:10.1016/S0022-1694(00)00278-X.

    • Search Google Scholar
    • Export Citation
  • Bates, P. D., Horritt M. S. , and Fewtrell T. J. , 2010: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol., 387, 3345, doi:10.1016/j.jhydrol.2010.03.027.

    • Search Google Scholar
    • Export Citation
  • Biancamaria, S., Bates P. D. , Boone A. , and Mognard N. M. , 2009: Large-scale coupled hydrologic and hydraulic modelling of the Ob River in Siberia. J. Hydrol., 379, 136150, doi:10.1016/j.jhydrol.2009.09.054.

    • Search Google Scholar
    • Export Citation
  • Biancamaria, S., and Coauthors, 2010: Preliminary characterization of SWOT hydrology error budget and global capabilities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 619, doi:10.1109/JSTARS.2009.2034614.

    • Search Google Scholar
    • Export Citation
  • Boone, A., Masson V. , Meyers T. , and Noilhan J. , 2000: The influence of the inclusion of soil freezing on simulations by a soil–vegetation–atmosphere transfer scheme. J. Appl. Meteor., 39, 15441569, doi:10.1175/1520-0450(2000)039<1544:TIOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cunge, J. A., 1969: On the subject of a flood propagation computation method (Muskingum method). J. Hydraul. Res., 7, 205230, doi:10.1080/00221686909500264.

    • Search Google Scholar
    • Export Citation
  • David, C. H., Habets F. , Maidment D. R. , and Yang Z.-L. , 2011a: RAPID applied to the SIM-France model. Hydrol. Processes, 25, 34123425, doi:10.1002/hyp.8070.

    • Search Google Scholar
    • Export Citation
  • David, C. H., Maidment D. R. , Niu G.-Y. , Yang Z.-L. , Habets F. , and Eijkhout V. , 2011b: River network routing on the NHDPlus dataset. J. Hydrometeor., 12, 913934, doi:10.1175/2011JHM1345.1.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., Alkama R. , Douville H. , Becker M. , and Cazenave A. , 2010: Global evaluation of the ISBA–TRIP continental hydrological system. Part II: Uncertainties in river routing simulation related to flow velocity and groundwater storage. J. Hydrometeor., 11, 601661, doi:10.1175/2010JHM1212.1.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., Boone A. , Delire C. , and Noilhan J. , 2011: Local evaluation of the interaction between Soil Biosphere Atmosphere soil multilayer diffusion scheme using four pedotransfer functions. J. Geophys. Res., 116, D20126, doi:10.1029/2011JD016002.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., Alkama R. , Papa F. , Faroux S. , Douville H. , and Prigent C. , 2012: Global off-line evaluation of the ISBA–TRIP flood model. Climate Dyn., 38, 13891412, doi:10.1007/s00382-011-1054-9.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., Martin E. , and Faroux S. , 2013: Reconciling soil thermal and hydrological lower boundary conditions in land surface models. J. Geophys. Res. Atmos., 118, 7819–7834, doi:10.1002/jgrd.50631.

    • Search Google Scholar
    • Export Citation
  • Dümenil, H., and Todini E. , 1992: A rainfall–runoff scheme for use in the Hamburg climate model. Advances in Theoretical Hydrology, J. P. O’Kane, Ed., Elsevier, 129157.

  • Durand, M., Andreadis K. M. , Alsdorf D. E. , Lettenmaier D. P. , Moller D. , and Wilson M. , 2008: Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model. Geophys. Res. Lett., 35, L20401, doi:10.1029/2008GL034150.

    • Search Google Scholar
    • Export Citation
  • Durand, M., Rodriguez E. , Douglas E. A. , and Trigg M. , 2010: Estimating river depth from remote sensing swath interferometry measurements of river height, slope, and width. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 20–31, doi:10.1109/JSTARS.2009.2033453.

    • Search Google Scholar
    • Export Citation
  • Durand, M., Neal J. , Rodriguez E. , Andreadis K. M. , Smith L. C. , and Yoon Y. , 2014: Estimating reach-averaged discharge for the River Severn from measurements of river water surface elevation and slope. J. Hydrol., 511, 92104, doi:10.1016/j.jhydrol.2013.12.050.

    • Search Google Scholar
    • Export Citation
  • Faroux, S., Kaptué Tchuenté A. T. , Roujean J.-L. , Masson V. , Martin E. , and Le Moigne P. , 2013: ECOCLIMAP-II/Europe: A twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models. Geosci. Model Dev., 6, 563582, doi:10.5194/gmd-6-563-2013.

    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys.,45, RG2004, doi:10.1029/2005RG000183.

  • Flores, A. N., Entekhabi D. , and Bras R. L. , 2012: Data assimilation for improving soil moisture estimation at hillslope scales: Experiments with synthetic SMAP radar data. IAHS Publ., 352, 308311.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., Boone A. , Yamazaki D. , Decharme B. , Papa F. , and Mognard N. , 2012: The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the Amazon basin. J. Hydrometeor., 13, 16411665, doi:10.1175/JHM-D-12-021.1.

    • Search Google Scholar
    • Export Citation
  • Gill, M. A., 1978: Flood routing by the Muskingum method. J. Hydrol., 36, 353363, doi:10.1016/0022-1694(78)90153-1.

  • Gleason, C. J., and Smith L. C. , 2014: Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proc. Natl. Acad. Sci. USA, 111, 4788–4791, doi:10.1073/pnas.1317606111.

    • Search Google Scholar
    • Export Citation
  • Goutal, N., and Maurel F. , 2002: A finite volume solver for 1D shallow water equations applied to an actual river. Int. J. Numer. Methods Fluids, 38, 119, doi:10.1002/fld.201.

    • Search Google Scholar
    • Export Citation
  • Habets, F., and Coauthors, 1999a: The ISBA surface scheme in a macroscale hydrological model, applied to the HAPEXMOBILHY area: Part 1. Model and database. J. Hydrol., 217, 7596, doi:10.1016/S0022-1694(99)00019-0.

    • Search Google Scholar
    • Export Citation
  • Habets, F., Etchevers P. , Golaz C. , Leblois E. , Ledoux E. , Martin E. , Noilhan J. , and Ottlé C. , 1999b: Simulation of the water budget and the river flows of the Rhone basin. J. Geophys. Res.,104, 31 145–31 172, doi:10.1029/1999JD901008.

  • Habets, F., and Coauthors, 2008: The SAFRAN–ISBA–MODCOU hydrometeorological model applied over France. J. Geophys. Res.,113, D06113, doi:10.1029/2007JD008548.

  • Kerr, Y., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, 666687, doi:10.1109/JPROC.2010.2043032.

    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and Swenson S. C. , 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.

    • Search Google Scholar
    • Export Citation
  • Larnier, K., 2010: Modélisation thermohydraulique d’un tronçon de Garonne en lien avec l’habitat piscicole: Approches statistique et déterministe. Ph.D. thesis, Institut National Polytechnique de Toulouse, 216 pp.

  • Ledoux, E., Girard G. , and Villeneuve J. P. , 1984: Proposition d’un modèle couplé pour la simulation conjointe des écoulements de surface et des écoulements souterrains sur un bassin hydrologique. Houille Blanche, 1–2, 101110, doi:10.1051/lhb/1984005.

    • Search Google Scholar
    • Export Citation
  • Ledoux, E., Girard G. , Marsily G. D. , and Deschenes J. , 1989: Spatially distributed modelling: Conceptual approach, coupling surface water and ground-water. Unsaturated Flow in Hydrologic Modelling: Theory and Practice, H. J. Morel-Seytoux, Ed., NATO ASI Series C, Vol. 275, Kluwer Academic, 435–454.

  • Leopold, L. B., and Maddock T. Jr., 1953: The hydraulic geometry of stream channels and some physiographic implications. USGS Professional Paper 252, 57 pp.

  • Masson, V., and Coauthors, 2013: The SURFEX v7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, doi:10.5194/gmd-6-929-2013.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paiva, R. C. D., Collischonn W. , and Tucci C. E. M. , 2011: Large scale hydrologic and hydrodynamic modelling using limited data and a GIS based approach. J. Hydrol., 406, 170181, doi:10.1016/j.jhydrol.2011.06.007.

    • Search Google Scholar
    • Export Citation
  • Pavelsky, P., Durand M. , Andreadis K. M. , Beighley R. E. , Paiva R. C. D. , Allen G. H. , and Miller Z. F. , 2014: Assessing the potential global extent of SWOT river discharge observations. J. Hydrol., 519, 15161525, doi:10.1016/j.jhydrol.2014.08.044.

    • Search Google Scholar
    • Export Citation
  • Pedinotti, V., Boone A. , Decharme B. , Crétaux J. F. , Mognard N. , Panthou G. , Papa F. , and Tanimoun B. A. , 2012: Evaluation of the ISBA–TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets. Hydrol. Earth Syst. Sci., 16, 17451773, doi:10.5194/hess-16-1745-2012.

    • Search Google Scholar
    • Export Citation
  • Pedinotti, V., Boone A. , Ricci S. , Biancamaria S. , and Mognard N. , 2014: Assimilation of satellite data to optimize large scale hydrological model parameters: A case study for the SWOT mission. Hydrol. Earth Syst. Sci., 18, 44854507, doi:10.5194/hess-18-4485-2014.

    • Search Google Scholar
    • Export Citation
  • Pierdicca, N., Pulvirenti L. , Fascetti F. , Crapolicchio R. , and Talone M. , 2013: Analysis of two years of ASCAT- and SMOS-derived soil moisture estimates over Europe and North Africa. Eur. J. Remote Sens., 46, 759773, doi:10.5721/EuJRS20134645.

    • Search Google Scholar
    • Export Citation
  • Ponce, V. M., and Yevjevich V. , 1978: Muskingum–Cunge method with variable parameters. J. Hydraul. Div., 104, 16631667.

  • Quintana-Seguí, P., Le Moigne P. , Durand Y. , Martin E. , and Habets F. , 2008: Analysis of near-surface atmospheric variables: Validation of the SAFRAN analysis over France. J. Appl. Meteor. Climatol., 47, 92107, doi:10.1175/2007JAMC1636.1.

    • Search Google Scholar
    • Export Citation
  • Ritter, B., and Geleyn J. F. , 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saleh, F., Flipo N. , Habets F. , Ducharne A. , Oudin L. , Viennot P. , and Ledoux E. , 2011: Modeling the impact of in-stream water level fluctuations on stream–aquifer interactions at the regional scale. J. Hydrol., 400, 490500, doi:10.1016/j.jhydrol.2011.02.001.

    • Search Google Scholar
    • Export Citation
  • Santos da Silva, J., Calmant S. , Seyler F. , Corrêa Rotunno Filho O. , Cochonneau G. , and João Mansur W. , 2010: Water levels in the Amazon basin derived from the ERS2 and Envisat radar altimetry missions. Remote Sens. Environ., 114, 21602181, doi:10.1016/j.rse.2010.04.020.

    • Search Google Scholar
    • Export Citation
  • SWOT Project, 2014: Surface Water and Ocean Topography Mission (SWOT) project: Science requirements document. JPL D-61923, 27 pp. [Available online at https://swot.jpl.nasa.gov/files/swot/SRD_021215.pdf.]

  • Syed, T. H., Famiglietti J. S. , Rodell M. , Chen J. , and Wilson C. R. , 2008: Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44, W02433, doi:10.1029/2006WR005779.

    • Search Google Scholar
    • Export Citation
  • Todini, E., 2007: A mass conservative and water storage consistent variable parameter Muskingum–Cunge approach. Hydrol. Earth Syst. Sci., 11, 16451659, doi:10.5194/hess-11-1645-2007.

    • Search Google Scholar
    • Export Citation
  • Trigg, M. A., Wilson M. D. , Bates P. D. , Horritt M. S. , Alsdorf D. E. , Forsberg B. R. , and Vega M. C. , 2009: Amazon flood wave hydraulics. J. Hydrol., 374, 92105, doi:10.1016/j.jhydrol.2009.06.004.

    • Search Google Scholar
    • Export Citation
  • Vergnes, J.-P., Decharme B. , and Habets F. , 2014: Introduction of groundwater capillary rises using subgrid spatial variability of topography into the ISBA land surface model. J. Geophys. Res. Atmos.,119, 11 065–11 086, doi:10.1002/2014JD021573.

  • Vidal, J.-P., Martin E. , Franchistéguy L. , Baillon M. , and Soubeyroux J.-M. , 2010: A 50-year high-resolution atmospheric reanalysis over France with the SAFRAN system. Int. J. Climatol., 30, 16271644, doi:10.1002/joc.2003.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., Lettenmaier D. P. , and Zartarian V. G. , 1992: A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res., 97, 27172728, doi:10.1029/91JD01786.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., de Almeida G. A. M. , and Bates P. D. , 2013: Improving computational efficiency in global river models by implementing the local inertial flow equation and a vector-based river network map. Water Resour. Res., 49, 72217235, doi:10.1002/wrcr.20552.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., O’Loughlin F. , Trigg M. A. , Miller Z. F. , Pavelsky T. M. , and Bates P. D. , 2014: Development of the global width database for large rivers. Water Resour. Res., 50, 34673480, doi:10.1002/2013WR014664.

    • Search Google Scholar
    • Export Citation
  • Zhao, R. J., 1992: The Xinanjiang model applied in China. J. Hydrol., 134, 317381, doi:10.1016/0022-1694(92)90096-E.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 881 574 34
PDF Downloads 232 56 2