Data Length Requirements for Observational Estimates of Land–Atmosphere Coupling Strength

Kirsten L. Findell Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Kirsten L. Findell in
Current site
Google Scholar
PubMed
Close
,
Pierre Gentine Department of Earth and Environmental Engineering, and Earth Institute, Columbia University, New York, New York

Search for other papers by Pierre Gentine in
Current site
Google Scholar
PubMed
Close
,
Benjamin R. Lintner Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Benjamin R. Lintner in
Current site
Google Scholar
PubMed
Close
, and
Benoit P. Guillod Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Benoit P. Guillod in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Multiple metrics have been developed in recent years to characterize the strength of land–atmosphere coupling in regional and global climate models. Evaluation of these metrics against observations has proven challenging because of limited observations and/or metric definitions based on model experimental designs that are not replicable with observations. Additionally, because observations are limited in time, with only a single realization of the earth’s climate available, metrics of land–atmosphere coupling strength typically assume stationarity and ergodicity, so that an observed time series (or set of time series) can be used in place of an ensemble mean of multiple realizations. The present study evaluates the observational data requirements necessary for robust quantification of a suite of land–atmosphere coupling metrics previously described in the literature. It is demonstrated that the amount of data required to obtain robust estimates of metrics assessing relationships between variables is greater than that necessary to constrain means of directly measured observables. Moreover, while the addition of unbiased noise does not significantly alter the mean of a directly observable quantity, inclusion of such noise degrades metrics based on connections between variables, yielding a unidirectional and negative impact on metric strength estimates. This analysis suggests that longer records of surface observations are required to correctly estimate land–atmosphere coupling strength than are required to estimate mean values of the observed quantities.

Current affiliation: Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom.

Corresponding author address: Kirsten L. Findell, Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, NJ 08540-6649. E-mail: kirsten.findell@noaa.gov

Abstract

Multiple metrics have been developed in recent years to characterize the strength of land–atmosphere coupling in regional and global climate models. Evaluation of these metrics against observations has proven challenging because of limited observations and/or metric definitions based on model experimental designs that are not replicable with observations. Additionally, because observations are limited in time, with only a single realization of the earth’s climate available, metrics of land–atmosphere coupling strength typically assume stationarity and ergodicity, so that an observed time series (or set of time series) can be used in place of an ensemble mean of multiple realizations. The present study evaluates the observational data requirements necessary for robust quantification of a suite of land–atmosphere coupling metrics previously described in the literature. It is demonstrated that the amount of data required to obtain robust estimates of metrics assessing relationships between variables is greater than that necessary to constrain means of directly measured observables. Moreover, while the addition of unbiased noise does not significantly alter the mean of a directly observable quantity, inclusion of such noise degrades metrics based on connections between variables, yielding a unidirectional and negative impact on metric strength estimates. This analysis suggests that longer records of surface observations are required to correctly estimate land–atmosphere coupling strength than are required to estimate mean values of the observed quantities.

Current affiliation: Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom.

Corresponding author address: Kirsten L. Findell, Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, NJ 08540-6649. E-mail: kirsten.findell@noaa.gov
Save
  • Becker, E., Berbery E. H. , and Higgins R. W. , 2009: Understanding the characteristics of daily precipitation over the United States using the North American Regional Reanalysis. J. Climate, 22, 62686286, doi:10.1175/2009JCLI2838.1.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., Luo Y. , Mitchell K. E. , and Betts A. K. , 2003: Eta model estimated land surface processes and the hydrologic cycle of the Mississippi basin. J. Geophys. Res., 108, 8852, doi:10.1029/2002JD003192.

    • Search Google Scholar
    • Export Citation
  • Berg, A., Findell K. L. , Lintner B. R. , Gentine P. , and Kerr C. , 2013: Precipitation sensitivity to surface heat fluxes over North America in reanalysis and model data. J. Hydrometeor., 14, 722–743, doi:10.1175/JHM-D-12-0111.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Ball J. H. , 1995: The FIFE surface diurnal cycle climate. J. Geophys. Res., 100, 25 67925 693, doi:10.1029/94JD03121.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Viterbo P. , and Wood E. , 1998: Surface energy and water balance for the Arkansas–Red River basin from the ECMWF reanalysis. J. Climate,11, 2881–2897, doi:10.1175/1520-0442(1998)011<2881:SEAWBF>2.0.CO;2.

  • Betts, A. K., Ball J. H. , and Viterbo P. , 1999: Basin-scale surface water and energy budgets for the Mississippi from the ECMWF reanalysis. J. Geophys. Res., 104, 19 29319 306, doi:10.1029/1999JD900056.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Fuentes J. , Garstang M. , and Ball J. , 2002: Surface diurnal cycle and boundary layer structure over Rondonia during the rainy season. J. Geophys. Res., 107, 8065, doi:10.1029/2001JD000356.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Bosilovich M. , Viterbo P. , and Zhang Y. , 2003: Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF reanalysis (ERA-40) and NASA Data Assimilation Office fvGCM for 1990–1999. J. Geophys. Res.,108, 8618, doi:10.1029/2002JD003127.

  • Betts, A. K., Zhao M. , Dirmeyer P. A. , and Beljaars A. C. M. , 2006: Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. J. Geophys. Res., 111, D22S04, doi:10.1029/2006JD007174.

    • Search Google Scholar
    • Export Citation
  • Bras, R., 1989: Hydrology: An Introduction to Hydrologic Science. Addison-Wesley, 660 pp.

  • Chen, F., and Zhang Y. , 2009: On the coupling strength between the land surface and the atmosphere: From viewport of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980.

    • Search Google Scholar
    • Export Citation
  • Crago, R., 1996: Conservation and variability of the evaporative fraction during the daytime. J. Hydrol., 180, 173194, doi:10.1016/0022-1694(95)02903-6.

    • Search Google Scholar
    • Export Citation
  • Crago, R., and Brutsaert W. , 1996: Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen ratio. J. Hydrol., 178, 241255, doi:10.1016/0022-1694(95)02803-X.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2006: The hydrologic feedback pathway for land–climate coupling. J. Hydrometeor., 7, 857867, doi:10.1175/JHM526.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Koster R. D. , and Guo Z. , 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, doi:10.1175/JHM532.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Schlosser C. A. , and Brubaker K. L. , 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288, doi:10.1175/2008JHM1016.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Evidence for enhanced land–atmosphere feedback in a warming climate. J. Hydrometeor., 13, 981995, doi:10.1175/JHM-D-11-0104.1.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1979: Bootstrap methods: Another look at the jackknife. Ann. Stat., 7, 126, doi:10.1214/aos/1176344552.

  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., Reichle R. H. , Koster R. D. , and Crow W. T. , 2010: Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeor., 11, 832840, doi:10.1175/2010JHM1223.1.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and Wood E. F. , 2011: Observed land–atmosphere coupling from satellite remote sensing and reanalysis. J. Hydrometeor., 12, 12211254, doi:10.1175/2011JHM1380.1.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., Wood E. F. , and Vinukollu R. K. , 2012: A global intercomparison of modeled and observed land–atmosphere coupling. J. Hydrometeor., 13, 739784, doi:10.1175/JHM-D-11-0119.1.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. , 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, doi:10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., Gentine P. , and Lintner B. , 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, doi:10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., Entekhabi D. , Chehbouni A. , Boulet G. , and Duchemin B. , 2007: Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteor., 143, 1329, doi:10.1016/j.agrformet.2006.11.002.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., Entekhabi D. , and Polcher J. , 2011: The diurnal behavior of evaporative fraction in the soil–vegetation–atmospheric boundary layer continuum. J. Hydrometeor., 12, 15301546, doi:10.1175/2011JHM1261.1.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., Holtslag A. A. M. , D’Andrea F. , and Ek M. , 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 1443–1462, doi:10.1175/JHM-D-12-0137.1.

    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., and Coauthors, 2014: Land-surface controls on afternoon precipitation diagnosed from observational data: Uncertainties and confounding factors. Atmos. Chem. Phys., 14, 83438367, doi:10.5194/acp-14-8343-2014.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Künsch, H. R., 1989: The jackknife and the bootstrap for general stationary observations. Ann. Stat., 17, 12171241, doi:10.1214/aos/1176347265.

    • Search Google Scholar
    • Export Citation
  • Liu, D., Wang G. , Mei R. , Yu Z. , and Gu H. , 2014: Diagnosing the strength of land–atmosphere coupling at subseasonal to seasonal time scales in Asia. J. Hydrometeor.,15, 320–339, doi:10.1175/JHM-D-13-0104.1.

  • Marshall, C. H., Crawford K. C. , Mitchell K. E. , and Stensrud D. J. , 2003: The impact of the land surface physics in the operational NCEP Eta model on simulating the diurnal cycle: Evaluation and testing using Oklahoma Mesonet data. Wea. Forecasting, 18, 748768, doi:10.1175/1520-0434(2003)018<0748:TIOTLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mei, R., and Wang G. , 2012: Summer land–atmosphere coupling strength in the United States: Comparison among observations, reanalysis data, and numerical models. J. Hydrometeor., 13, 10101022, doi:10.1175/JHM-D-11-075.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc.,87, 343–360, doi:10.1175/BAMS-87-3-343.

  • Miralles, D. G., van den Berg M. J. , Teuling A. J. , and de Jeu R. A. M. , 2012: Soil moisture–temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, doi:10.1029/2012GL053703.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004a: The multi-institutional North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004b: NCEP completes 25-year North American Reanalysis: Precipitation assimilation and land surface are two hallmarks. GEWEX News, Vol. 14, No. 2, International GEWEX Project Office, Silver Spring, MD, 912.

  • Mo, K., Chelliah M. , Carrera M. L. , Higgins R. W. , and Ebisuzaki W. , 2005: Atmospheric moisture transport over the United States and Mexico as evaluated in the NCEP regional reanalysis. J. Hydrometeor., 6, 710728, doi:10.1175/JHM452.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Klein S. A. , 2013: Land–atmosphere coupling manifested in warm-season observations on the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 119, 509–528, doi:10.1002/2013JD020492.

    • Search Google Scholar
    • Export Citation
  • Roads, J., and Coauthors, 2003: GCIP Water and Energy Budget Synthesis (WEBS). J. Geophys. Res., 108, 8609, doi:10.1029/2002JD002583.

  • Ruane, A. C., 2010a: NARR’s atmospheric water cycle components. Part I: 20-year mean and annual interactions. J. Hydrometeor., 11, 12051219, doi:10.1175/2010JHM1193.1.

    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., 2010b: NARR’s atmospheric water cycle components. Part II: Summertime mean and diurnal interactions. J. Hydrometeor., 11, 12201233, doi:10.1175/2010JHM1279.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., Friedl M. A. , and Kustas W. , 2005: An empirical investigation of convective planetary boundary layer evolution and its relationship with the land surface. J. Appl. Meteor., 44, 917932, doi:10.1175/JAM2240.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., Friedl M. A. , and Ek M. B. , 2007: Convective planetary boundary layer interactions with the land surface at diurnal time scales: Diagnostics and feedbacks. J. Hydrometeor., 8, 10821097, doi:10.1175/JHM614.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., Peters-Lidard C. D. , Kumar S. V. , Alonge C. , and Tao W.-K. , 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599, doi:10.1175/2009JHM1066.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Luethi D. , Litschi M. , and Schaer C. , 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, doi:10.1038/nature05095.

    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., Arnold S. R. , and Taylor C. M. , 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282285, doi:10.1038/nature11390.

    • Search Google Scholar
    • Export Citation
  • Stoline, M. R., 1981: The status of multiple comparisons: Simultaneous estimation of all pairwise comparisons in one-way ANOVA designs. Amer. Stat., 35, 134141, doi:10.1080/00031305.1981.10479331.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., de Jeu R. A. M. , Guichard F. , Harris P. P. , and Dorigo W. A. , 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, doi:10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Xie, S. C., and Coauthors, 2010: ARM climate modeling best estimate data: A new product for climate studies. Bull. Amer. Meteor. Soc., 91, 1320, doi:10.1175/2009BAMS2891.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1096 579 29
PDF Downloads 420 82 2