A Validation of Passive Microwave Rain-Rate Retrievals from the Chinese FengYun-3B Satellite

Bin Xu * Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
National Meteorological Information Center, China Meteorological Administration, Beijing, China

Search for other papers by Bin Xu in
Current site
Google Scholar
PubMed
Close
,
Pingping Xie NOAA/Climate Prediction Center, College Park, Maryland

Search for other papers by Pingping Xie in
Current site
Google Scholar
PubMed
Close
,
Ming Xu * Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing, China

Search for other papers by Ming Xu in
Current site
Google Scholar
PubMed
Close
,
Lipeng Jiang National Meteorological Information Center, China Meteorological Administration, Beijing, China

Search for other papers by Lipeng Jiang in
Current site
Google Scholar
PubMed
Close
,
Chunxiang Shi National Meteorological Information Center, China Meteorological Administration, Beijing, China

Search for other papers by Chunxiang Shi in
Current site
Google Scholar
PubMed
Close
, and
Ran You National Satellite Meteorological Center, China Meteorological Administration, Beijing, China

Search for other papers by Ran You in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Level 2 rain-rate retrievals from the Microwave Radiation Imager (MWRI) on board the Chinese FengYun (FY)-3B satellite are verified using minute rainfall measurements from a dense automatic weather station (AWS) network over eastern China for the warm seasons (May–September) of 2012 and 2013. First, analyses of minute rainfall are constructed on a 0.05° latitude–longitude grid box through interpolation of quality-controlled gauge reports. Ground truth for the FY-3B rain-rate retrievals is defined as the 5-min mean rate centering at the satellite observation time and over the 0.05° latitude–longitude grid boxes falling into the target field-of-view (FOV) coverage determined with parallax correction. Parallax displacement is about the same as the height of cloud or half of the FY-3B FOV size. Parallax correction is crucial to ensure accurate evaluation and applications of the level 2 precipitation retrievals from FY-3B and other satellites, including the Global Precipitation Mission (GPM) core satellite, and should be implemented before the level 2 retrievals may be used as inputs to the level 3 integrated satellite precipitation analyses. FY-3B level 2 retrievals present good skills in detecting raining pixels and quantifying rain rate as retrievals from other PMW sensors. However, they tend to miss rainfall from warm and low clouds of small scales and underestimate (overestimate) heavy (light) precipitation. In particular, the limited maximum rain rate yields significant underestimation for many heavy rainfall events. Maximum rainfall detected by the FY-3B retrievals for the afternoon orbits is shifted by about 7–8 km toward the leeward direction, most likely caused by the displacement between the heavy rainfall and tallest cloud top.

Corresponding author address: Bin Xu, National Meteorological Information Center, China Meteorological Administration, 46 South Zhongguancun Street, Haidian District, Beijing 100081, China. E-mail: xubin@cma.gov.cn

Abstract

Level 2 rain-rate retrievals from the Microwave Radiation Imager (MWRI) on board the Chinese FengYun (FY)-3B satellite are verified using minute rainfall measurements from a dense automatic weather station (AWS) network over eastern China for the warm seasons (May–September) of 2012 and 2013. First, analyses of minute rainfall are constructed on a 0.05° latitude–longitude grid box through interpolation of quality-controlled gauge reports. Ground truth for the FY-3B rain-rate retrievals is defined as the 5-min mean rate centering at the satellite observation time and over the 0.05° latitude–longitude grid boxes falling into the target field-of-view (FOV) coverage determined with parallax correction. Parallax displacement is about the same as the height of cloud or half of the FY-3B FOV size. Parallax correction is crucial to ensure accurate evaluation and applications of the level 2 precipitation retrievals from FY-3B and other satellites, including the Global Precipitation Mission (GPM) core satellite, and should be implemented before the level 2 retrievals may be used as inputs to the level 3 integrated satellite precipitation analyses. FY-3B level 2 retrievals present good skills in detecting raining pixels and quantifying rain rate as retrievals from other PMW sensors. However, they tend to miss rainfall from warm and low clouds of small scales and underestimate (overestimate) heavy (light) precipitation. In particular, the limited maximum rain rate yields significant underestimation for many heavy rainfall events. Maximum rainfall detected by the FY-3B retrievals for the afternoon orbits is shifted by about 7–8 km toward the leeward direction, most likely caused by the displacement between the heavy rainfall and tallest cloud top.

Corresponding author address: Bin Xu, National Meteorological Information Center, China Meteorological Administration, 46 South Zhongguancun Street, Haidian District, Beijing 100081, China. E-mail: xubin@cma.gov.cn
Save
  • AghaKouchak, A., Behrangi A. , Sorooshian S. , Hsu K. , and Amitai E. , 2011: Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J. Geophys. Res., 116, D02115, doi:10.1029/2010JD014741.

    • Search Google Scholar
    • Export Citation
  • Amitai, E., Llort X. , and Sempere-Torres D. , 2009: Comparison of TRMM radar rainfall estimates with NOAA next-generation QPE. J. Meteor. Soc. Japan, 87A, 109118, doi:10.2151/jmsj.87A.109.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., Hardman M. E. , Harrold T. W. , and Pardoe C. W. , 1973: The structure of rainbands with a mid-latitude depression. Quart. J. Roy. Meteor. Soc., 99, 215231, doi:10.1002/qj.49709942002.

    • Search Google Scholar
    • Export Citation
  • Chen, M., Shi W. , Xie P. , Silva V. B. S. , Kousky V. E. , Higgins R. W. , and Janowiak J. E. , 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res.,113, D04110, doi:10.1029/2007JD009132.

  • Conner, M. D., and Petty G. W. , 1998: Validation and intercomparison of SSM/I rain-rate retrieval methods over the continental United States. J. Appl. Meteor., 37, 679700, doi:10.1175/1520-0450(1998)037<0679:VAIOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Creutin, J. D., and Obled C. , 1982: Objective analysis and mapping techniques for rainfall fields: An objective comparison. Water Resour. Res., 18, 413431, doi:10.1029/WR018i002p00413.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Lin X. , and Hsu K. , 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727744, doi:10.1007/s00382-007-0260-y.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 47–64, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Grody N. C. , 1994: Effects of surface conditions on rain identification using the DMSP-SSM/I. Remote Sens. Rev., 11, 195209, doi:10.1080/02757259409532265.

    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • Gopalan, K., Wang N.-Y. , Ferraro R. , and Liu C. , 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, doi:10.1175/2010JTECHA1454.1.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave/Imager (SSM/I). J. Geophys. Res., 96, 74237435, doi:10.1029/91JD00045.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1978: Organization and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms. Rev. Geophys. Space Phys., 16, 741755, doi:10.1029/RG016i004p00741.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Adler R. F. , Negri A. J. , and Huffman G. J. , 2007: Flood and landslide applications of high-resolution satellite rainfall products. J. Nat. Hazards, 43, 285294, doi:10.1007/s11069-006-9106-x.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Anagnostou E. N. , 2004: Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction. J. Geophys. Res., 109, D07102, doi:10.1029/2003JD003986.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701–722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, K.-L., Gao X. , Sorooshian S. , and Gupta V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 1997: Estimates of root-mean-square random error contained in finite sets of estimated precipitation. J. Appl. Meteor., 36, 11911201, doi:10.1175/1520-0450(1997)036<1191:EORMSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , Gu G. , Nelkin E. J. , Bowman K. P. , Stocker E. F. , and Wolff D. B. , 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Bolvin D. , Braithwaite D. , Hsu K. , Joyce R. , Kidd C. , Sorooshian S. , and Xie P. , 2014: Early examples from the Integrated Multi-Satellite Retrievals for GPM (IMERG). Geophysical Research Abstracts, Vol. 16, Abstract EGU2014-11232. [Available online at http://meetingorganizer.copernicus.org/EGU2014/EGU2014-11232.pdf.]

  • Janowiak, J. E., Joyce R. J. , and Yarosh Y. , 2001: A real-time global half-hourly pixel-resolution IR dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217, doi:10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., and Xie P. , 2011: Kalman filter based CMORPH. J. Hydrometeor., 12, 15471563, doi:10.1175/JHM-D-11-022.1.

  • Joyce, R. J., Janowiak J. E. , and Huffman G. , 2001: Latitudinally and seasonally dependent zenith-angle corrections for geostationary satellite IR brightness temperature. J. Appl. Meteor., 40, 689703, doi:10.1175/1520-0450(2001)040<0689:LASDZA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Viltard N. , and Gosset M. , 2013: An error model for instantaneous satellite rainfall estimates: Evaluation of BRAIN-TMI over West Africa. Quart. J. Roy. Meteor. Soc., 139, 894911, doi:10.1002/qj.1964.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Hong Y. , Gourley J. J. , Cao Q. , Schwaller M. , and Peterson W. , 2014: Research framework to bridge from the Global Precipitation Measurement mission core satellite to the constellation sensors using ground-radar-based National Mosaic QPE. Remote Sensing of the Terrestrial Water Cycle, Geophys. Monogr., Vol. 206, Amer. Geophys. Union, 61–80, doi:10.1002/9781118872086.ch4.

  • Krajewski, W. F., and Smith J. A. , 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394, doi:10.1016/S0309-1708(02)00062-3.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Berg W. , Thomas-Stahle J. , and Masunaga H. , 2006: Quantifying global uncertainties in a simple microwave rainfall algorithm. J. Atmos. Oceanic Technol., 23, 2337, doi:10.1175/JTECH1827.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Randel D. , Kirstetter P. E. , Kulie M. , and Wang N.-Y. , 2014: Precipitation from the GPM Microwave Imager and constellation radiometers. Geophysical Research Abstracts, Vol. 16, Abstract EGU2014-1574. [Available online at http://meetingorganizer.copernicus.org/EGU2014/EGU2014-1574.pdf.]

  • Liao, L., Meneghini R. , and Iguchi T. , 2001: Comparisons of rain rate and reflectivity factor derived from the TRMM Precipitation Radar and the WSR-88D over the Melbourne, Florida, site. J. Atmos. Oceanic Technol., 18, 19591974, doi:10.1175/1520-0426(2001)018<1959:CORRAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and Hou A. Y. , 2008: Evaluation of coincident passive microwave rainfall estimates using TRMM PR and ground measurements as references. J. Appl. Meteor. And Climatol., 47, 31703187, doi:10.1175/2008JAMC1893.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Zipser E. J. , Cecil D. J. , Nesbitt S. W. , and Sherwood S. , 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Liu, G., and Curry J. A. , 1992: Retrievals of precipitation from satellite microwave measurements using both emission and scattering. J. Geophys. Res., 97, 99599974, doi:10.1029/92JD00289.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and Skofronick-Jackson G. S. , 2013: Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders. Atmos. Res., 131, 8194, doi:10.1016/j.atmosres.2012.10.011.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices. Meteor. Atmos. Phys., 54, 7999, doi:10.1007/BF01030053.

    • Search Google Scholar
    • Export Citation
  • Ren, Z.-H., and Coauthors, 2010: Quality control procedures for hourly precipitation data from automatic weather stations in China (in Chinese with English abstract). Meteor. Monogr., 36, 123132.

    • Search Google Scholar
    • Export Citation
  • Saha, A., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and Arkin P. A. , 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166, doi:10.1175/2008JHM1052.1.

    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two dimensional interpolation function for irregularly spaced data. Proc. 23rd National Conf. of the Association for Computing Machinery, Princeton, NJ, ACM, 517524.

  • Simpson, J., Adler R. F. , and North G. R. , 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278294, doi:10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, L., Tian Y. , and Lin X. , 2014: Validation of precipitation retrievals from satellite-based passive microwave sensors. J. Geophys. Res. Atmos., 119, 4546–4567, doi:10.1002/2013JD020933.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Peters-Lidard C. D. , Choudhury B. , and Garcia M. , 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8, 11651183, doi:10.1175/2007JHM859.1.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Ebert E. E. , Sohn B.-J. , Oh H.-J. , Levizzani V. , Smith E. A. , and Ferraro R. , 2004: Validation of an operational global precipitation analysis at short time scales. Preprints, 12th Conf. on Satellite Meteorology and Oceanography, Seattle, WA, Amer. Meteor. Soc., JP1.2. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_56865.htm.]

  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan,87A, 137–151, doi:10.2151/jmsj.87A.137.

  • Vicente, G. A., Davenport J. C. , and Scofield R. A. , 2002: The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution. Int. J. Remote Sens., 23, 221230, doi:10.1080/01431160010006935.

    • Search Google Scholar
    • Export Citation
  • Wang, C., Luo Z. J. , and Huang X. , 2011: Parallax correction in collocating CloudSat and Moderate Resolution Imaging Spectroadiometer (MODIS) observations: Method and application to convection study. J. Geophys. Res.,116, D17201, doi:10.1029/2011JD016097.

    • Search Google Scholar
    • Export Citation
  • Wang, N.-Y., Liu C. , Ferraro R. , Wolff D. , Zipser E. , and Kummerow C. , 2009: TRMM 2A12 land precipitation product—Status and future plans. J. Meteor. Soc. Japan, 87A, 237253, doi:10.2151/jmsj.87A.237.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., Chang A. T. C. , and Chiu L. S. , 1991: Retrievals of monthly rainfall indices from microwave radiometric measurement using probability distribution functions. J. Atmos. Oceanic Technol., 8, 118136, doi:10.1175/1520-0426(1991)008<0118:ROMRIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and Fisher B. L. , 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237, doi:10.1175/2008JAMC1875.1.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and Fisher B. L. , 2009: Assessing the relative performance of microwave-based satellite rain-rate retrievals using TRMM ground validation data. J. Appl. Meteor. Climatol., 48, 10691099, doi:10.1175/2008JAMC2127.1.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., Marks D. A. , Amitai E. , Silberstein D. S. , Fisher B. L. , Tokay A. , Wang J. , and Pippitt J. L. , 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22, 365380, doi:10.1175/JTECH1700.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Xiong A.-Y. , 2011: A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J. Geophys. Res., 116, D21106, doi:10.1029/2011JD016118.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Joyce R. , 2014: Integrating information from satellite observations and numerical models for improved global precipitation analyses: Exploring for an optimal strategy. Remote Sensing of the Terrestrial Water Cycle, Geophys. Monogr., Vol. 206, Amer. Geophys. Union, 43–60, doi:10.1002/9781118872086.ch3.

  • Xie, P., Chen M. , Yatagai A. , Hayasaka T. , Fukushima Y. , and Yang S. , 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, doi:10.1175/JHM583.1.

    • Search Google Scholar
    • Export Citation
  • Yang, H., Li X.-Q. , You R. , and Wu S.-L. , 2013: Environmental data records from FengYun-#B microwave radiation imager (in Chinese with English abstract). Adv. Meteor. Sci. Technol., 3, 136143.

    • Search Google Scholar
    • Export Citation
  • Yang, S., Olson W. S. , Wang J. J. , Bell T. L. , Smith E. A. , and Kummerow C. D. , 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data. J. Appl. Meteor. Climatol., 45, 721739, doi:10.1175/JAM2370.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011a: National Mosaic and Multi-sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Qi Y. , Howard K. , Lanston C. , and Kaney B. , 2011b: Radar Quality Index (RQI)—A combined measure for beam blockage and VPR effects in a national network. IAHS Publ.,351, 388–393.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 471 129 10
PDF Downloads 329 59 4