Global Maps of Streamflow Characteristics Based on Observations from Several Thousand Catchments

Hylke E. Beck Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy

Search for other papers by Hylke E. Beck in
Current site
Google Scholar
PubMed
Close
,
Ad de Roo Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy

Search for other papers by Ad de Roo in
Current site
Google Scholar
PubMed
Close
, and
Albert I. J. M. van Dijk Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Albert I. J. M. van Dijk in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Streamflow Q estimation in ungauged catchments is one of the greatest challenges facing hydrologists. Observed Q from 3000 to 4000 small-to-medium-sized catchments (10–10 000 km2) around the globe were used to train neural network ensembles to estimate Q characteristics based on climate and physiographic characteristics of the catchments. In total, 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Testing coefficients of determination for the estimation of the Q characteristics ranged from 0.55 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were relatively unimportant, perhaps because of their data quality. The trained neural network ensembles were subsequently applied spatially over the entire ice-free land surface, resulting in global maps of the Q characteristics (at 0.125° resolution). These maps possess several unique features: they represent observation-driven estimates, they are based on an unprecedentedly large set of catchments, and they have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macroscale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of four macroscale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available online (http://water.jrc.ec.europa.eu/GSCD).

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0155.s1.

Corresponding author address: Hylke Beck, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy. E-mail: hylke.beck@jrc.ec.europa.eu

Abstract

Streamflow Q estimation in ungauged catchments is one of the greatest challenges facing hydrologists. Observed Q from 3000 to 4000 small-to-medium-sized catchments (10–10 000 km2) around the globe were used to train neural network ensembles to estimate Q characteristics based on climate and physiographic characteristics of the catchments. In total, 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Testing coefficients of determination for the estimation of the Q characteristics ranged from 0.55 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were relatively unimportant, perhaps because of their data quality. The trained neural network ensembles were subsequently applied spatially over the entire ice-free land surface, resulting in global maps of the Q characteristics (at 0.125° resolution). These maps possess several unique features: they represent observation-driven estimates, they are based on an unprecedentedly large set of catchments, and they have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macroscale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of four macroscale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available online (http://water.jrc.ec.europa.eu/GSCD).

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0155.s1.

Corresponding author address: Hylke Beck, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy. E-mail: hylke.beck@jrc.ec.europa.eu

Supplementary Materials

    • Supplemental Materials (PDF 86.34 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aguado, E., Cayan D. , Riddle L. , and Roos M. , 1992: Climatic fluctuations and the timing of West Coast streamflow. J. Climate, 5, 14681483, doi:10.1175/1520-0442(1992)005<1468:CFATTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andréassian, V., Lerat J. , Loumagne C. , Mathevet T. , Michel C. , Oudin L. , and Perrin C. , 2007: What is really undermining hydrologic science today? Hydrol. Processes, 21, 28192822, doi:10.1002/hyp.6854.

    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., 1995: Grid mapping of river discharge. J. Hydrol., 167, 3956, doi:10.1016/0022-1694(94)02626-M.

  • Babovic, V., 2005: Data mining in hydrology. Hydrol. Processes, 19, 15111515, doi:10.1002/hyp.5862.

  • Balsamo, G., Beljaars A. , Scipal K. , Viterbo P. , van den Hurk B. , Hirschi M. , and Betts A. K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land water resources dataset. Hydrol. Earth Syst. Sci., 19, 389407, doi:10.5194/hess-19-389-2015.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., Bruijnzeel L. A. , van Dijk A. I. J. M. , McVicar T. R. , Scatena F. N. , and Schellekens J. , 2013a: The impact of forest regeneration on streamflow in 12 mesoscale humid tropical catchments. Hydrol. Earth Syst. Sci., 17, 26132635, doi:10.5194/hess-17-2613-2013.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., van Dijk A. I. J. M. , Miralles D. G. , de Jeu R. A. M. , Bruijnzeel L. A. , McVicar T. R. , and Schellekens J. , 2013b: Global patterns in baseflow index and recession based on streamflow observations from 3394 catchments. Water Resour. Res., 49, 78437863, doi:10.1002/2013WR013918.

    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., Woods R. A. , and Hrachowitz M. , 2014: A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Climate Change, 4, 583586, doi:10.1038/nclimate2246.

    • Search Google Scholar
    • Export Citation
  • Beven, K. J., 1989: Changing ideas in hydrology—The case of physically-based models. J. Hydrol., 105, 157172, doi:10.1016/0022-1694(89)90101-7.

    • Search Google Scholar
    • Export Citation
  • Blöschl, G., Sivapalan M. , Wagener T. , Viglione A. , and Savenije H. , Eds., 2013: Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales. Cambridge University Press, 490 pp.

  • Bontemps, S., Defourny P. , and van Bogaert E. , 2011: GlobCover 2009, products description and validation report. Tech. rep., ESA GlobCover project, 53 pp. [Available online at http://epic.awi.de/31014/16/GLOBCOVER2009_Validation_Report_2-2.pdf.]

  • Boorman, D. B., Hollist J. M. , and Lilly A. , 1995: Hydrology of soil types: A hydrologically based classification of the soils of the United Kingdom. IH Rep. 126, Institute of Hydrology, 137 pp. [Available online at http://www.ceh.ac.uk/products/publications/documents/ih126hydrologyofsoiltypes.pdf.]

  • Brandes, D., Hoffmann J. G. , and Mangarillo J. T. , 2005: Base flow recession rates, low flows, and hydrologic features of small watersheds in Pennsylvania, USA. J. Amer. Water Resour. Assoc., 41, 11771186, doi:10.1111/j.1752-1688.2005.tb03792.x.

    • Search Google Scholar
    • Export Citation
  • Brauman, K. A., Daily G. C. , Duarte T. K. , and Mooney H. A. , 2007: The nature and value of ecosystem services: An overview highlighting hydrologic services. Annu. Rev. Environ. Resour., 32, 6798, doi:10.1146/annurev.energy.32.031306.102758.

    • Search Google Scholar
    • Export Citation
  • Brown, J., Ferrians O. J. , Heginbottom J. A. , and Melnikov E. S. , 1997: Circum-Arctic map of permafrost and ground-ice conditions, version 2. National Snow and Ice Data Center, accessed 28 December 2012. [Available online at http://nsidc.org/data/ggd318.]

  • Bruijnzeel, L. A., 2004: Hydrological functions of tropical forests: Not seeing the soil for the trees. Agric. Ecosyst. Environ., 104, 185228, doi:10.1016/j.agee.2004.01.015.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life.Academic Press, 508 pp.

  • Castiglioni, S., Lombardi L. , Tot E. , Castellarin A. , and Montanari A. , 2010: Calibration of rainfall–runoff models in ungauged basins: A regional maximum likelihood approach. Adv. Water Resour., 33, 12351242, doi:10.1016/j.advwatres.2010.04.009.

    • Search Google Scholar
    • Export Citation
  • Choi, H. I., and Liang X. , 2010: Improved terrestrial hydrologic representation in mesoscale land surface models. J. Hydrometeor., 11, 797809, doi:10.1175/2010JHM1221.1.

    • Search Google Scholar
    • Export Citation
  • Clausen, B., and Biggs B. J. F. , 2000: Flow variables for ecological studies in temperate streams: Groupings based on covariance. J. Hydrol., 237, 184197, doi:10.1016/S0022-1694(00)00306-1.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Gibson W. P. , Taylor G. H. , Johnson G. L. , and Pasteris P. , 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22, 99113, doi:10.3354/cr022099.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., 2007: Influence of runoff parameterization on continental hydrology: Comparison between the Noah and the ISBA land surface models. J. Geophys. Res.,112, D19108, doi:10.1029/2007JD008463.

  • Decharme, B., and Douville H. , 2007: Global validation of the ISBA sub-grid hydrology. Climate Dyn., 29, 2137, doi:10.1007/s00382-006-0216-7.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137A, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Detenbeck, N. E., Brady V. J. , Taylor D. L. , Snarski V. M. , and Batterman S. L. , 2005: Relationship of stream flow regime in western Lake Superior basin to watershed type characteristics. J. Hydrol., 309, 258276, doi:10.1016/j.jhydrol.2004.11.024.

    • Search Google Scholar
    • Export Citation
  • Devito, K., Creed I. , Gan T. , Mendoza C. , Petrone R. , Silins U. , and Smerdon B. , 2005: A framework for broad-scale classification of hydrologic response units on the Boreal Plain: Is topography the last thing to consider? Hydrol. Processes, 19, 17051714, doi:10.1002/hyp.5881.

    • Search Google Scholar
    • Export Citation
  • Döll, P., Kaspar F. , and Lehner B. , 2003: A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol., 270, 105134, doi:10.1016/S0022-1694(02)00283-4.

    • Search Google Scholar
    • Export Citation
  • Duan, L., Liu T. , Wang X. , Luo Y. , and Wu L. , 2010: Development of a regional regression model for estimating annual runoff in the Hailar River basin of China. J. Water Resour. Prot., 2, 934943, doi:10.4236/jwarp.2010.211111.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., Schaake J. , and Koren V. , 2001: A priori estimation of land surface model parameters. Land Surface Hydrology, Meteorology, and Climate: Observations and Modeling, V. Lakshmi, J. Albertson, and J. Schaake, Eds., Water Science and Application Series, Vol. 3, Amer. Geophys. Union, 77–94.

  • Duan, Q., and Coauthors, 2006: Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol., 320, 317, doi:10.1016/j.jhydrol.2005.07.031.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Falcone, J. A., Carlisle D. M. , Wolock D. M. , and Meador M. R. , 2010: GAGES: A stream gage database for evaluating natural and altered flow conditions in the conterminous United States. Ecology, 91, 621621, doi:10.1890/09-0889.1.

    • Search Google Scholar
    • Export Citation
  • FAO, 2000: Global Forest Resources Assessment 2000: Main report. FAO Forestry Paper 140, 479 pp. [Available online at ftp://ftp.fao.org/docrep/fao/003/Y1997E/FRA%202000%20Main%20report.pdf.]

  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Farvolden, R. N., 1963: Geologic controls on ground-water storage and base flow. J. Hydrol., 1, 219249, doi:10.1016/0022-1694(63)90004-0.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., and Vörösmarty C. J. , 2007: The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements. IAHS Publ.,309, 129–136.

  • Feng, X., and Houser P. , 2008: An investigation of GSWP-2 Mississippi River basin surface water and energy budgets. J. Geophys. Res.,113, D15118, doi:10.1029/2007JD009144.

  • Fennessey, N., and Vogel R. M. , 1990: Regional flow-duration curves for ungauged sites in Massachusetts. J. Water Resour. Plann. Manage., 116, 530549, doi:10.1061/(ASCE)0733-9496(1990)116:4(530).

    • Search Google Scholar
    • Export Citation
  • Gao, Y., Xie H. , Lu N. , Yao T. , and Liang T. , 2010: Toward advanced daily cloud-free snow cover and snow water equivalent products from TerraAqua MODIS and Aqua AMSR-E measurements. J. Hydrol., 385, 2335, doi:10.1016/j.jhydrol.2010.01.022.

    • Search Google Scholar
    • Export Citation
  • Gebert, W. A., Graczyk D. J. , and Krug W. R. , 1987: Average annual runoff in the United States, 1951–80. Hydrologic Investigations Atlas HA-710, U.S. Geological Survey.

  • Gleeson, T., Smith L. , Moosdorf N. , Hartmann J. , Dürr H. H. , Manning A. H. , van Beek L. P. H. , and Jellinek A. M. , 2011: Mapping permeability over the surface of the earth. Geophys. Res. Lett., 38, L02401, doi:10.1029/2010GL045565.

    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., and Arnell N. W. , 2011: Simulating current global river runoff with a global hydrological model: Model revisions, validation, and sensitivity analysis. Hydrol. Processes, 25, 11291145, doi:10.1002/hyp.7727.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., and Legates D. R. , 1994: The accuracy of United States precipitation data. Bull. Amer. Meteor. Soc., 75, 215227, doi:10.1175/1520-0477(1994)075<0215:TAOUSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., Perrin C. , Kumar R. , Blöschl G. , Clark M. , Montanari A. , and Andréassian V. , 2014: Large-sample hydrology: A need to balance depth with breadth. Hydrol. Earth Syst. Sci., 18, 463477, doi:10.5194/hess-18-463-2014.

    • Search Google Scholar
    • Export Citation
  • Gusev, E. M., Nasonova O. N. , Dzhogan L. Y. , and Kovalev E. E. , 2008: The application of the land surface model for calculating river runoff in high latitudes. Water Resour., 35, 171184, doi:10.1134/S009780780802005X.

    • Search Google Scholar
    • Export Citation
  • Gustard, A., and Irving K. M. , 1994: Classification of the low flow response of European soils. IAHS Publ.,221, 113–117.

  • Gustard, A., Bullock A. , and Dixon J. M. , 1992: Low flow estimation in the United Kingdom. Tech. Rep. 108, Institute of Hydrology, Wallingford, United Kingdom, 292 pp.

  • Haddeland, I., and Coauthors, 2011: Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884, doi:10.1175/2011JHM1324.1.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Salomonson V. V. , and Riggs G. A. , 2006: MODIS/Aqua snow cover daily L3 global 0.05deg CMG, version 5. National Snow and Ice Data Center, accessed 11 November 2014, doi:10.5067/EW53FPU9NAS6.

  • Hall, F. R., 1968: Base-flow recessions—A review. Water Resour. Res., 4, 973983, doi:10.1029/WR004i005p00973.

  • Hargreaves, G. L., Hargreaves G. H. , and Riley J. P. , 1985: Irrigation water requirements for Senegal River basin. J. Irrig. Drain. Eng., 111, 265275, doi:10.1061/(ASCE)0733-9437(1985)111:3(265).

    • Search Google Scholar
    • Export Citation
  • He, Y., Bárdossy A. , and Zehe E. , 2011: A review of regionalisation for continuous streamflow simulation. Hydrol. Earth Syst. Sci., 15, 35393553, doi:10.5194/hess-15-3539-2011.

    • Search Google Scholar
    • Export Citation
  • Hengl, T., and Coauthors, 2014: SoilGrids1km—Global soil information based on automated mapping. PLOS One,9, e105992, doi:10.1371/journal.pone.0105992; Corrigendum: 9, e114788, doi:10.1371/journal.pone.0114788.

  • Hijmans, R. J., Cameron S. E. , Parra J. L. , Jones P. G. , and Jarvis A. , 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, doi:10.1002/joc.1276.

    • Search Google Scholar
    • Export Citation
  • Hope, A., and Bart R. , 2012: Synthetic monthly flow duration curves for the Cape Floristic region, South Africa. Water SA, 38, 191200, doi:10.4314/wsa.v38i2.4.

    • Search Google Scholar
    • Export Citation
  • Horton, R. E., 1933: The role of infiltration in the hydrological cycle. Trans. Amer. Geophys. Union, 14, 446460.

  • Hrachowitz, M., and Coauthors, 2013: A decade of predictions in ungauged basins (PUB)—A review. Hydrol. Sci. J., 58, 11981255, doi:10.1080/02626667.2013.803183.

    • Search Google Scholar
    • Export Citation
  • Hughes, G. O., 1997: An analysis of baseflow recession in the Republic of South Africa. M.S. thesis, Department of Agricultural Engineering, University of Natal, 205 pp. [Available online at http://researchspace.ukzn.ac.za/xmlui/handle/10413/5416.]

  • Jia, G. J., Epstein H. E. , and Walker D. A. , 2003: Greening of Arctic Alaska, 1981–2001. Geophys. Res. Lett., 30, 2067, doi:10.1029/2003GL018268.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. H., 1999: The insignificance of statistical significance testing. J. Wildl. Manage., 63, 763772, doi:10.2307/3802789.

  • Kauffeldt, A., Halldin S. , Rodhe A. , Xu C.-Y. , and Westerberg I. K. , 2013: Disinformative data in large-scale hydrological modelling. Hydrol. Earth Syst. Sci., 17, 28452013, doi:10.5194/hess-17-2845-2013.

    • Search Google Scholar
    • Export Citation
  • Kim, U., and Kaluarachchi J. J. , 2008: Application of parameter estimation and regionalization methodologies to ungauged basins of the Upper Blue Nile River basin, Ethiopia. J. Hydrol., 362, 3956, doi:10.1016/j.jhydrol.2008.08.016.

    • Search Google Scholar
    • Export Citation
  • Krakauer, N. Y., and Temimi M. , 2011: Stream recession curves and storage variability in small watersheds. Hydrol. Earth Syst. Sci., 15, 23772389, doi:10.5194/hess-15-2377-2011.

    • Search Google Scholar
    • Export Citation
  • Laaha, G., and Blöschl G. , 2006: A comparison of low flow regionalisation methods—Catchment grouping. J. Hydrol., 323, 193214, doi:10.1016/j.jhydrol.2005.09.001.

    • Search Google Scholar
    • Export Citation
  • Lacey, G., and Grayson R. , 1998: Relating baseflow to catchment properties in south-eastern Australia. J. Hydrol., 204, 231250, doi:10.1016/S0022-1694(97)00124-8.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., 2012: Derivation of watershed boundaries for GRDC gauging stations based on the HydroSHEDS drainage network. Tech. Rep. 41, Global Runoff Data Centre, Federal Institute of Hydrology, Koblenz, Germany, 12 pp.

  • Lehner, B., and Döll P. , 2004: Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol., 296, 122, doi:10.1016/j.jhydrol.2004.03.028.

    • Search Google Scholar
    • Export Citation
  • Leibowitz, S. G., Wigington P. J. Jr., Comeleo R. L. , and Ebersole J. L. , 2012: A temperature–precipitation-based model of thirty-year mean snowpack accumulation and melt in Oregon, USA. Hydrol. Processes, 26, 741759, doi:10.1002/hyp.8176.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors, 1998: The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment: 3. Spatial and temporal analysis of water fluxes. Global Planet. Change, 19, 161179, doi:10.1016/S0921-8181(98)00046-0.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors, 2004: Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. J. Geophys. Res., 109, D07S91, doi:10.1029/2003JD003517.

    • Search Google Scholar
    • Export Citation
  • Lombardi, L., Toth E. , Castellarin A. , Montanari A. , and Brath A. , 2012: Calibration of a rainfall–runoff model at regional scale by optimising river discharge statistics: Performance analysis for the average/low flow regime. Phys. Chem. Earth, 42–44, 7784, doi:10.1016/j.pce.2011.05.013.

    • Search Google Scholar
    • Export Citation
  • Longobardi, A., and Villani P. , 2008: Baseflow index regionalization analysis in a Mediterranean area and data scarcity context: Role of the catchment permeability index. J. Hydrol., 355, 6375, doi:10.1016/j.jhydrol.2008.03.011.

    • Search Google Scholar
    • Export Citation
  • Marthews, T. R., Dadson S. J. , Lehner B. , Abele S. , and Gedney N. , 2015: A high-resolution global dataset of topographic index values for use in large-scale hydrological modelling. Hydrol. Earth Syst. Sci., 19, 91104, doi:10.5194/hess-19-91-2015.

    • Search Google Scholar
    • Export Citation
  • Materia, S., Dirmeyer P. A. , Guo Z. , Alessandri A. , and Navarra A. , 2010: The sensitivity of simulated river discharge to land surface representation and meteorological forcings. J. Hydrometeor., 11, 334351, doi:10.1175/2009JHM1162.1.

    • Search Google Scholar
    • Export Citation
  • Mazvimavi, D., Meijerink A. M. J. , Savenije H. H. G. , and Stein A. , 2005: Prediction of flow characteristics using multiple regression and neural networks: A case study in Zimbabwe. Phys. Chem. Earth, 30, 639647, doi:10.1016/j.pce.2005.08.003.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., 1994: Climate, soil water storage, and the average annual water balance. Water Resour. Res., 30, 21432156, doi:10.1029/94WR00586.

    • Search Google Scholar
    • Export Citation
  • Nasonova, O. N., Gusev Y. M. , and Kovalev Y. E. , 2009: Investigating the ability of a land surface model to simulate streamflow with the accuracy of hydrological models: A case study using MOPEX materials. J. Hydrometeor., 10, 11281150, doi:10.1175/2009JHM1083.1.

    • Search Google Scholar
    • Export Citation
  • Neff, B. P., Day S. M. , Piggott A. R. , and Fuller L. M. , 2005: Base flow in the Great Lakes basin. Scientific Investigations Rep. 2005-5217, USGS, 23 pp. [Available online at http://pubs.usgs.gov/sir/2005/5217/.]

  • Nicholls, N., 2001: Commentary and analysis: The insignificance of significance testing. Bull. Amer. Meteor. Soc., 82, 981986, doi:10.1175/1520-0477(2001)082<0981:CAATIO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res.,116, D12109, doi:10.1029/2010JD015139.

  • Nuttle, W., 2002: Taking stock of water resources. Eos, Trans. Amer. Geophys. Union, 83, 513, doi:10.1029/2002EO000358.

  • Oki, T., Nishimura T. , and Dirmeyer P. , 1999: Assessment of annual runoff from land surface model using Total Runoff Integration Pathways (TRIP). J. Meteor. Soc. Japan, 77, 235255.

    • Search Google Scholar
    • Export Citation
  • Ol’dekop, E. M., 1911: On evaporation from the surface of river basins (in Russian). Transactions on Meteorological Observations, Lur-evskogo, University of Tartu, Tartu, Estonia.

  • Olden, J. D., and Poff N. L. , 2003: Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res. Appl., 19, 101121, doi:10.1002/rra.700.

    • Search Google Scholar
    • Export Citation
  • Oudin, L., Andréassian V. , Lerat J. , and Michel C. , 2008: Has land cover a significant impact on mean annual streamflow? An international assessment using 1508 catchments. J. Hydrol., 357, 303316, doi:10.1016/j.jhydrol.2008.05.021.

    • Search Google Scholar
    • Export Citation
  • Pan, M., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model-simulated snow cover extent. J. Geophys. Res., 108, 8850, doi:10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., Chiew F. H. S. , Western A. W. , and McMahon T. A. , 2000: Extension of unimpaired monthly streamflow data and regionalisation of parameter values to estimate streamflow in ungauged catchments. Rep. for the Australian National Land and Water Resources Audit, Centre for Environmental Applied Hydrology, University of Melbourne, Melbourne, Australia, 37 pp.

  • Peel, M. C., Finlayson B. L. , and McMahon T. A. , 2007: Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, doi:10.5194/hess-11-1633-2007.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., McMahon T. A. , and Finlayson B. L. , 2010: Vegetation impact on mean annual evapotranspiration at a global catchment scale. Water Resour. Res.,46, W09508, doi:10.1029/2009WR008233.

  • Peña-Arancibia, J. L., Van Dijk A. I. J. M. , Mulligan M. , and Bruijnzeel L. A. , 2010: The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments. Hydrol. Earth Syst. Sci., 14, 21932205, doi:10.5194/hess-14-2193-2010.

    • Search Google Scholar
    • Export Citation
  • Petersen, T., Devineni N. , and Sankarasubramanian A. , 2012: Seasonality of monthly runoff over the continental United States: Causality and relations to mean annual and mean monthly distributions of moisture and energy. J. Hydrol., 468–469, 139150, doi:10.1016/j.jhydrol.2012.08.028.

    • Search Google Scholar
    • Export Citation
  • Pettyjohn, W. A., and Henning R. , 1979: Preliminary estimate of ground-water recharge rates, related streamflow and water quality in Ohio. Water Resources Centre Project Completion Rep. 552, Ohio State University, 323 pp.

  • Pike, J. G., 1964: The estimation of annual run-off from meteorological data in a tropical climate. J. Hydrol., 2, 116123, doi:10.1016/0022-1694(64)90022-8.

    • Search Google Scholar
    • Export Citation
  • Pinheiro, V. B., and Naghettini M. , 2013: Calibration of the parameters of a rainfall–runoff model in ungauged basins using synthetic flow duration curves as estimated by regional analysis. J. Hydrol. Eng., 18, 16171626, doi:10.1061/(ASCE)HE.1943-5584.0000737.

    • Search Google Scholar
    • Export Citation
  • Poff, N. L. R., Allan D. , Bain M. B. , Karr J. R. , and Prestegaard K. L. , 1997: The natural flow regime. BioScience, 47, 769784, doi:10.2307/1313099.

    • Search Google Scholar
    • Export Citation
  • Potter, N. J., Zhang L. , Milly P. C. D. , McMahon T. A. , and Jakeman A. J. , 2005: Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments. Water Resour. Res., 41, W06007, doi:10.1029/2004WR003697.

    • Search Google Scholar
    • Export Citation
  • Price, K., 2011: Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Prog. Phys. Geogr., 35, 465492, doi:10.1177/0309133311402714.

    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res., 108, 8846, doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., McWilliams E. B. , Famiglietti J. S. , Beaudoing H. K. , and Nigro J. , 2011: Estimating evapotranspiration using an observation based terrestrial water budget. Hydrol. Processes, 25, 40824092, doi:10.1002/hyp.8369.

    • Search Google Scholar
    • Export Citation
  • Rosero, E., Gulden L. E. , and Yang Z. , 2011: Ensemble evaluation of hydrologically enhanced Noah-LSM: Partitioning of the water balance in high-resolution simulations over the Little Washita River experimental watershed. J. Hydrometeor., 12, 4564, doi:10.1175/2010JHM1228.1.

    • Search Google Scholar
    • Export Citation
  • Royall, R. M., 1986: The effect of sample size on the meaning of significance tests. Amer. Stat., 40, 313315.

  • Salinas, J. L., Laaha G. , Rogger M. , Parajka J. , Viglione A. , Sivapalan M. , and Blöschl G. , 2013: Comparative assessment of predictions in ungauged basins—Part 2: Flood and low flow studies. Hydrol. Earth Syst. Sci., 17, 26372652, doi:10.5194/hess-17-2637-2013.

    • Search Google Scholar
    • Export Citation
  • Sanborn, S. C., and Bledsoe B. P. , 2006: Predicting streamflow regime metrics for ungauged streams in Colorado, Washington, and Oregon. J. Hydrol., 325, 241261, doi:10.1016/j.jhydrol.2005.10.018.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., Koren V. I. , Duan Q.-Y. , Mitchell K. , and Chen F. , 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 7461, doi:10.1029/95JD02892.

    • Search Google Scholar
    • Export Citation
  • Schreiber, P.,