Prospects for Advancing Drought Understanding, Monitoring, and Prediction

Eric F. Wood * Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Eric F. Wood in
Current site
Google Scholar
PubMed
Close
,
Siegfried D. Schubert Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Siegfried D. Schubert in
Current site
Google Scholar
PubMed
Close
,
Andrew W. Wood Research Applications Laboratory, NCAR, Boulder, Colorado

Search for other papers by Andrew W. Wood in
Current site
Google Scholar
PubMed
Close
,
Christa D. Peters-Lidard Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christa D. Peters-Lidard in
Current site
Google Scholar
PubMed
Close
,
Kingtse C. Mo NOAA/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Kingtse C. Mo in
Current site
Google Scholar
PubMed
Close
,
Annarita Mariotti ** NOAA/OAR/Climate Program Office, Silver Spring, Maryland

Search for other papers by Annarita Mariotti in
Current site
Google Scholar
PubMed
Close
, and
Roger S. Pulwarty NOAA/OAR/Climate Program Office, Silver Spring, Maryland, and NOAA/ESRL/Physical Sciences Division, Boulder, Colorado

Search for other papers by Roger S. Pulwarty in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper summarizes and synthesizes the research carried out under the NOAA Drought Task Force (DTF) and submitted in this special collection. The DTF is organized and supported by NOAA’s Climate Program Office with the National Integrated Drought Information System (NIDIS) and involves scientists from across NOAA, academia, and other agencies. The synthesis includes an assessment of successes and remaining challenges in monitoring and prediction capabilities, as well as a perspective of the current understanding of North American drought and key research gaps. Results from the DTF papers indicate that key successes for drought monitoring include the application of modern land surface hydrological models that can be used for objective drought analysis, including extended retrospective forcing datasets to support hydrologic reanalyses, and the expansion of near-real-time satellite-based monitoring and analyses, particularly those describing vegetation and evapotranspiration. In the area of drought prediction, successes highlighted in the papers include the development of the North American Multimodel Ensemble (NMME) suite of seasonal model forecasts, an established basis for the importance of La Niña in drought events over the southern Great Plains, and an appreciation of the role of internal atmospheric variability related to drought events. Despite such progress, there are still important limitations in our ability to predict various aspects of drought, including onset, duration, severity, and recovery. Critical challenges include (i) the development of objective, science-based integration approaches for merging multiple information sources; (ii) long, consistent hydrometeorological records to better characterize drought; and (iii) extending skillful precipitation forecasts beyond a 1-month lead time.

Corresponding author address: E. F. Wood, Civil and Environmental Engineering, Princeton University, Olden Street, EQUAD E415, Princeton, NJ 08544. E-mail: efwood@princeton.edu

This article is included in the Advancing Drought Monitoring and Prediction Special Collection.

Abstract

This paper summarizes and synthesizes the research carried out under the NOAA Drought Task Force (DTF) and submitted in this special collection. The DTF is organized and supported by NOAA’s Climate Program Office with the National Integrated Drought Information System (NIDIS) and involves scientists from across NOAA, academia, and other agencies. The synthesis includes an assessment of successes and remaining challenges in monitoring and prediction capabilities, as well as a perspective of the current understanding of North American drought and key research gaps. Results from the DTF papers indicate that key successes for drought monitoring include the application of modern land surface hydrological models that can be used for objective drought analysis, including extended retrospective forcing datasets to support hydrologic reanalyses, and the expansion of near-real-time satellite-based monitoring and analyses, particularly those describing vegetation and evapotranspiration. In the area of drought prediction, successes highlighted in the papers include the development of the North American Multimodel Ensemble (NMME) suite of seasonal model forecasts, an established basis for the importance of La Niña in drought events over the southern Great Plains, and an appreciation of the role of internal atmospheric variability related to drought events. Despite such progress, there are still important limitations in our ability to predict various aspects of drought, including onset, duration, severity, and recovery. Critical challenges include (i) the development of objective, science-based integration approaches for merging multiple information sources; (ii) long, consistent hydrometeorological records to better characterize drought; and (iii) extending skillful precipitation forecasts beyond a 1-month lead time.

Corresponding author address: E. F. Wood, Civil and Environmental Engineering, Princeton University, Olden Street, EQUAD E415, Princeton, NJ 08544. E-mail: efwood@princeton.edu

This article is included in the Advancing Drought Monitoring and Prediction Special Collection.

Save
  • AghaKouchak, A., and Nakhjiri N. , 2012: A near real-time satellite-based global drought climate data record. Environ. Res. Lett., 7, 044037, doi:10.1088/1748-9326/7/4/044037.

    • Search Google Scholar
    • Export Citation
  • Anderson, M., Hain C. , Otkin J. , Zhan X. , Mo K. , Svoboda M. , Wardlow B. , and Pimstein A. , 2013: An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. Drought Monitor classifications. J. Hydrometeor., 14, 10351056, doi:10.1175/JHM-D-12-0140.1.

    • Search Google Scholar
    • Export Citation
  • Below, R., Grover-Kopec E. , and Dilley M. , 2007: Documenting drought-related disasters: A global reassessment. J. Environ. Dev., 16, 328344, doi:10.1177/1070496507306222.

    • Search Google Scholar
    • Export Citation
  • Chaney, N. W., Sheffield J. , Villarini G. , and Wood E. F. , 2014: Development of a high-resolution gridded daily meteorological dataset over sub-Saharan Africa: Spatial analysis of trends in climate extremes. J. Climate, 27, 58155835, doi:10.1175/JCLI-D-13-00423.1.

    • Search Google Scholar
    • Export Citation
  • Chirlin, G. R., and Wood E. F. , 1982: On the relationship between kriging and state estimation. Water Resour. Res., 18, 432438, doi:10.1029/WR018i002p00432.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Wei J. , Bosilovich M. G. , and Mocko D. M. , 2014: Comparing evaporative sources of terrestrial precipitation and their extremes in MERRA using relative entropy. J. Hydrometeor., 15, 102116, doi:10.1175/JHM-D-13-053.1.

    • Search Google Scholar
    • Export Citation
  • Dong, J., Ek M. , Hall D. , Peters-Lidard C. , Cosgrove B. , Miller J. , Riggs G. , and Xia Y. , 2014: Using air temperature to quantitatively predict the MODIS fractional snow cover retrieval errors over the continental United States. J. Hydrometeor., 15, 551562, doi:10.1175/JHM-D-13-060.1.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and AghaKouchak A. , 2013: Multivariate Standardized Drought Index: A parametric multi-index model. Adv. Water Resour., 57, 1218, doi:10.1016/j.advwatres.2013.03.009.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and AghaKouchak A. , 2014: A nonparametric multivariate multi-index drought monitoring framework. J. Hydrometeor., 15, 89101, doi:10.1175/JHM-D-12-0160.1.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., AghaKouchak A. , Nakhjiri N. , and Farahmand A. , 2014: Global integrated drought monitoring and prediction system. Sci. Data, 1, 140001, doi:10.1038/sdata.2014.1.

    • Search Google Scholar
    • Export Citation
  • Heim, R. R., Jr., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491165, doi:10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., Eischeid J. , Kumar A. , Leung R. , Mariotti A. , Mo K. , Schubert S. , and Seager R. , 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Search Google Scholar
    • Export Citation
  • Huang, J., van den Dool H. M. , and Georgakakos K. G. , 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9, 13501362, doi:10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Infanti, J. M., and Kirtman B. P. , 2014: Southeastern U.S. rainfall prediction in the North American Multi-Model Ensemble. J. Hydrometeor., 15, 529550, doi:10.1175/JHM-D-13-072.1.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Walker G. K. , Mahanama S. P. P. , and Reichle R. H. , 2014: Soil moisture initialization error and subgrid variability of precipitation in seasonal streamflow forecasting. J. Hydrometeor., 15, 6988, doi:10.1175/JHM-D-13-050.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Luo, L., and Wood E. F. , 2007: Monitoring and predicting the 2007 U.S. drought. Geophys. Res. Lett., 34, L22702, doi:10.1029/2007GL031673.

    • Search Google Scholar
    • Export Citation
  • Madadgar, S., and Moradkhani A. , 2013: A Bayesian framework for probabilistic seasonal drought forecasting. J. Hydrometeor., 14, 16851705, doi:10.1175/JHM-D-13-010.1.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., Doeskin N. J. , and Kleist J. , 1993: The relationship of drought frequency and duration to timescales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179184.

  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mo, K., 2008: Model-based drought indices over the United States. J. Hydrometeor., 9, 12121230, doi:10.1175/2008JHM1002.1.

  • Mo, K., and Lettenmaier D. , 2014: Objective drought classification using multiple land surface models. J. Hydrometeor., 15, 9901010, doi:10.1175/JHM-D-13-071.1.

    • Search Google Scholar
    • Export Citation
  • NCDC, 2012: Summer 2012 drought update. [Available online at www.ncdc.noaa.gov/news/summer-2012-drought-update.]

  • NIDIS, 2007: The National Integrated Drought Information System Implementation Plan. NIDIS Rep., 34 pp. [Available online at www.drought.gov/media/imageserver/NIDIS/content/whatisnidis/NIDIS-IPFinal-June07.pdf.]

  • NIDIS, 2012: National Drought Forum summary report and priority actions: Drought and U.S. preparedness in 2013 and beyond. NIDIS Rep., 53 pp. [Available online at www.drought.gov/media/pgfiles/2012-droughtForumFullReport.pdf.]

  • Nijssen, B., Shukla S. , Lin C. , Gao H. , Zhou T. , Sheffield J. , Wood E. F. , and Lettenmaier D. P. , 2014: A prototype global drought information system based on multiple land surface models. J. Hydrometeor., 15, 16611676, doi:10.1175/JHM-D-13-090.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Anderson M. C. , Hain C. , Mladenova I. E. , Basara J. B. , and Svoboda M. , 2013: Examining rapid onset drought development using the thermal infrared based evaporative stress index. J. Hydrometeor., 14, 10571074, doi:10.1175/JHM-D-12-0144.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. Research Paper 45, U.S. Weather Bureau, 58 pp.

  • Pegion, K., and Kumar A. , 2013: Does an ENSO-conditional skill mask improve seasonal predictions? Mon. Wea. Rev., 141, 45154533, doi:10.1175/MWR-D-12-00317.1.

    • Search Google Scholar
    • Export Citation
  • Pozzi, W., and Coauthors, 2013: Towards global drought early warning capability: Expanding international cooperation for the development of a framework for global drought monitoring and forecasting. Bull. Amer. Meteor. Soc.,94, 776–785, doi:10.1175/BAMS-D-11-00176.1.

  • Pulwarty, R., and Verdin J. , 2013: Crafting integrated early warning systems: The case of drought. Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies, 2nd ed. J. Birkmann, Ed., United Nations University Press, 720 pp.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, doi:10.1175/2009JCLI3060.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Goddard L. , Nakamura J. , Henderson N. , and Lee D. E. , 2014: Dynamical causes of the 2010/11 Texas–northern Mexico drought. J. Hydrometeor., 15, 3968, doi:10.1175/JHM-D-13-024.1.

    • Search Google Scholar
    • Export Citation
  • Shafer, B. A., and Dezman L. E. , 1982: Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. Proc. 50th Annual Western Snow Conf., Reno, NV, Western Snow Conference, 164–175. [Available online at www.westernsnowconference.org/node/932.]

  • Sheffield, J., and Wood E. F. , 2008: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21, 432458, doi:10.1175/2007JCLI1822.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2014: A drought monitoring and forecasting system for sub-Sahara African water resources and food security. Bull. Amer. Meteor. Soc.,95, 861–882, doi:10.1175/BAMS-D-12-00124.1.

  • Shukla, S., and Wood A. W. , 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, L02405, doi:10.1029/2007GL032487.

    • Search Google Scholar
    • Export Citation
  • Smith, A., and Katz R. , 2013: U.S. billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387–410, doi:10.1007/s11069-013-0566-5.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, doi:10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • U.S. Government, 2014: National Integrated Drought Information System Reauthorization Act of 2014. H. R. 2431, 113th Congress.

  • Wang, H., Schubert S. , Koster R. , Ham Y.-G. , and Suarez M. , 2014: On the role of SST forcing in the 2011 and 2012 extreme U.S. heat and drought: A study in contrasts. J. Hydrometeor, 15, 12551273, doi:10.1175/JHM-D-13-069.1.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., 2008: The University of Washington Surface Water Monitor: An experimental platform for national hydrologic assessment and prediction. 22nd Conf. on Hydrology, New Orleans, LA, Amer. Meteor. Soc., 5.2. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_134844.htm.]

  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Ek M. B. , Mocko D. , Peters-Lidard C. D. , Sheffield J. , Dong J. , and Wood E. F. , 2014: Uncertainties, correlations, and optimal blends of drought indices from the NLDAS multiple land surface model ensemble. J. Hydrometeor., 15, 16361650, doi:10.1175/JHM-D-13-058.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., Wood E. F. , Roundy J. K. , and Pan M. , 2013: CFSv2-based seasonal hydroclimatic forecasts over the conterminous United States. J. Climate, 26, 48284847, doi:10.1175/JCLI-D-12-00683.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2194 758 44
PDF Downloads 1092 272 23