Applicability of the Bulk-Transfer Approach to Estimate Evapotranspiration from Boreal Peatlands

Pierre-Erik Isabelle Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Québec, Canada

Search for other papers by Pierre-Erik Isabelle in
Current site
Google Scholar
PubMed
Close
,
Daniel F. Nadeau Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, Québec, Canada

Search for other papers by Daniel F. Nadeau in
Current site
Google Scholar
PubMed
Close
,
Alain N. Rousseau Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Québec, Canada

Search for other papers by Alain N. Rousseau in
Current site
Google Scholar
PubMed
Close
,
Carole Coursolle Centre d’Étude de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, Québec, Canada

Search for other papers by Carole Coursolle in
Current site
Google Scholar
PubMed
Close
, and
Hank A. Margolis Centre d’Étude de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, Québec, Canada

Search for other papers by Hank A. Margolis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In northern landscapes, peatlands are widespread and their hydrological processes are complex. Furthermore, they are typically remote, limiting the amount and accuracy of in situ measurements. This is especially the case for evapotranspiration ET, which strongly influences watershed hydrology. The objective of this paper is to demonstrate the validity of the bulk-transfer approach to estimate ET over boreal peatlands. The simplicity of the model relies on four assumptions: (i) near-neutral atmospheric conditions; (ii) wet surface; (iii) constant momentum roughness length depending on vegetation height; and (iv) constant water vapor roughness length, with the last two assumptions implying a constant water vapor transfer coefficient CE. Using eddy covariance data from three Canadian peatlands—Necopastic (James Bay, Québec), Mer Bleue (Ottawa, Ontario), and Western Peatland (Athabasca, Alberta)—this paper shows that these sites are characterized by frequent occurrences of near-neutral atmospheric conditions, especially the Necopastic site, with nearly 76% of the 30-min data segments occurring under near-neutral stratification. The analysis suggests these near-neutral conditions occur as a result of strong mechanical turbulence and weak buoyancy effects. The bulk-transfer approach gives promising results for 30-min and daily ET in terms of mean error and correlation, with performances similar to the Penman equation, without requiring net radiation data. The accuracy of the approach is likely related to the number of near-neutral periods and the elevated position of the water table, which backs up the wet surface assumption.

Current affiliation: Département de génie civil et de génie des eaux, Université Laval, Québec, Québec, Canada.

Corresponding author address: Pierre-Erik Isabelle, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, QC G1V 0A6, Canada. E-mail: pierre-erik.isabelle.1@ulaval.ca

Abstract

In northern landscapes, peatlands are widespread and their hydrological processes are complex. Furthermore, they are typically remote, limiting the amount and accuracy of in situ measurements. This is especially the case for evapotranspiration ET, which strongly influences watershed hydrology. The objective of this paper is to demonstrate the validity of the bulk-transfer approach to estimate ET over boreal peatlands. The simplicity of the model relies on four assumptions: (i) near-neutral atmospheric conditions; (ii) wet surface; (iii) constant momentum roughness length depending on vegetation height; and (iv) constant water vapor roughness length, with the last two assumptions implying a constant water vapor transfer coefficient CE. Using eddy covariance data from three Canadian peatlands—Necopastic (James Bay, Québec), Mer Bleue (Ottawa, Ontario), and Western Peatland (Athabasca, Alberta)—this paper shows that these sites are characterized by frequent occurrences of near-neutral atmospheric conditions, especially the Necopastic site, with nearly 76% of the 30-min data segments occurring under near-neutral stratification. The analysis suggests these near-neutral conditions occur as a result of strong mechanical turbulence and weak buoyancy effects. The bulk-transfer approach gives promising results for 30-min and daily ET in terms of mean error and correlation, with performances similar to the Penman equation, without requiring net radiation data. The accuracy of the approach is likely related to the number of near-neutral periods and the elevated position of the water table, which backs up the wet surface assumption.

Current affiliation: Département de génie civil et de génie des eaux, Université Laval, Québec, Québec, Canada.

Corresponding author address: Pierre-Erik Isabelle, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, QC G1V 0A6, Canada. E-mail: pierre-erik.isabelle.1@ulaval.ca
Save
  • Admiral, S. W., Lafleur P. M. , and Roulet N. T. , 2006: Controls on latent heat flux and energy partitioning at a peat bog in eastern Canada. Agric. For. Meteor., 140, 308321, doi:10.1016/j.agrformet.2006.03.017.

    • Search Google Scholar
    • Export Citation
  • Amiro, B. D., and Coauthors, 2006: Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agric. For. Meteor., 136, 237251, doi:10.1016/j.agrformet.2004.11.012.

    • Search Google Scholar
    • Export Citation
  • Archibald, J. A., and Walter M. T. , 2014: Do energy-based PET models require more input data than temperature-based models? An evaluation at four humid FLUXNET sites. J. Amer. Water Resour. Assoc., 50, 497508, doi:10.1111/jawr.12137.

    • Search Google Scholar
    • Export Citation
  • Aselmann, I., and Crutzen P. J. , 1989: Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem., 8, 307358, doi:10.1007/BF00052709.

    • Search Google Scholar
    • Export Citation
  • Bailey, W. G., Oke T. R. , and Rouse W. , Eds., 1997: Surface Climates of Canada. Canadian Association of Geographers Series in Canadian Geography, Vol. 4, McGill–Queen’s Press, 400 pp.

    • Search Google Scholar
    • Export Citation
  • Baird, A. J., 1997: Field estimation of macropore functioning and surface hydraulic conductivity in a fen peat. Hydrol. Processes, 11, 287295, doi:10.1002/(SICI)1099-1085(19970315)11:3<287::AID-HYP443>3.0.CO;2-L.

    • Search Google Scholar
    • Export Citation
  • Brümmer, C., and Coauthors, 2012: How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric. For. Meteor., 153, 1430, doi:10.1016/j.agrformet.2011.04.008.

    • Search Google Scholar
    • Export Citation
  • Brunet, Y., and Irvine M. R. , 2000: The control of coherent eddies in vegetation canopies: Streamwise structure spacing, canopy shear scale and atmospheric stability. Bound.-Layer Meteor., 94, 139163, doi:10.1023/A:1002406616227.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History, and Applications. D. Reidel, 299 pp.

  • Brutsaert, W., 2005: Hydrology: An Introduction. Cambridge University Press, 605 pp.

  • Brutsaert, W., Sugita M. , and Fritschen L. J. , 1990: Inner region humidity characteristics of the neutral boundary layer over prairie terrain. Water Resour. Res., 26, 29312936, doi:10.1029/WR026i012p02931.

    • Search Google Scholar
    • Export Citation
  • Campbell, D. I., and Williamson J. , 1997: Evaporation from a raised peat bog. J. Hydrol., 193, 142160, doi:10.1016/S0022-1694(96)03149-6.

    • Search Google Scholar
    • Export Citation
  • Coursolle, C., Giasson M.-A. , Margolis H. A. , and Bernier P. Y. , 2012: Moving towards carbon neutrality: CO2 exchange of a black spruce forest ecosystem during the first 10 years of recovery after harvest. Can. J. For. Res., 42, 19081918, doi:10.1139/x2012-133.

    • Search Google Scholar
    • Export Citation
  • Dimitrov, D. D., Grant R. F. , Lafleur P. M. , and Humphreys E. R. , 2010a: Modeling peat thermal regime of an ombrotrophic peatland with hummock–hollow microtopography. Soil. Sci. Soc. Amer. J., 74, 14061425, doi:10.2136/sssaj2009.0288.

    • Search Google Scholar
    • Export Citation
  • Dimitrov, D. D., Grant R. F. , Lafleur P. M. , and Humphreys E. R. , 2010b: Modeling the subsurface hydrology of Mer Bleue bog. Soil. Sci. Soc. Amer. J., 74, 680694, doi:10.2136/sssaj2009.0148.

    • Search Google Scholar
    • Export Citation
  • Dissanayaka, S. H., Hamamoto S. , Kawamoto K. , Komatsu T. , and Moldrup P. , 2012: Thermal properties of peaty soils: Effects of liquid-phase impedance factor and shrinkage. Vadose Zone J., 11, doi:10.2136/vzj2011.0092.

    • Search Google Scholar
    • Export Citation
  • Dorsey, J. R., Nemitz E. , Gallagher M. W. , Fowler D. , Williams P. I. , Bower K. N. , and Beswick K. M. , 2002: Direct measurements and parametrisation of aerosol flux, concentration and emission velocity above a city. Atmos. Environ., 36, 791800, doi:10.1016/S1352-2310(01)00526-X.

    • Search Google Scholar
    • Export Citation
  • Dullien, F. A., 1991: Porous Media: Fluid Transport and Pore Structure. Academic Press, 574 pp.

  • Eichinger, W. E., Parlange M. B. , and Stricker H. , 1996: On the concept of equilibrium evaporation and the value of the Priestley–Taylor coefficient. Water Resour. Res., 32, 161164, doi:10.1029/95WR02920.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Rogers D. P. , Edson J. B. , and Young G. S. , 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled–Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Falge, E., and Coauthors, 2001: Gap filling strategies for long term energy flux data sets. Agric. For. Meteor., 107, 7177, doi:10.1016/S0168-1923(00)00235-5.

    • Search Google Scholar
    • Export Citation
  • Finkelstein, P. L., and Sims P. F. , 2001: Sampling error in eddy correlation flux measurements. J. Geophys. Res., 106, 35033509, doi:10.1029/2000JD900731.

    • Search Google Scholar
    • Export Citation
  • Flanagan, L. B., and Syed K. H. , 2011: Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem. Global Change Biol., 17, 22712287, doi:10.1111/j.1365-2486.2010.02378.x.

    • Search Google Scholar
    • Export Citation
  • Fraser, C., Roulet N. T. , and Moore T. R. , 2001: Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog. Hydrol. Processes, 15, 31513166, doi:10.1002/hyp.322.

    • Search Google Scholar
    • Export Citation
  • Froidevaux, M., and Coauthors, 2013: A Raman lidar to measure water vapor in the atmospheric boundary layer. Adv. Water Resour., 51, 345356, doi:10.1016/j.advwatres.2012.04.008.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., Andreas E. L , Fairall C. W. , Guest P. S. , and Persson P. O. G. , 2007: SHEBA flux-profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteor., 124, 315333, doi:10.1007/s10546-007-9177-6.

    • Search Google Scholar
    • Export Citation
  • Halliwell, D. H., and Rouse W. R. , 1987: Soil heat flux in permafrost: Characteristics and accuracy of measurement. J. Climatol., 7, 571584, doi:10.1002/joc.3370070605.

    • Search Google Scholar
    • Export Citation
  • Hargreaves, G. H., and Samani Z. A. , 1982: Estimating potential evapotranspiration. J. Irrig. Drain. Div., 108, 225230.

  • Heikinheimo, M., Kangas M. , Tourula T. , Venäläinen A. , and Tattari S. , 1999: Momentum and heat fluxes over lakes Tämnaren and Råksjö determined by the bulk-aerodynamic and eddy-correlation methods. Agric. For. Meteor., 98-99, 521534, doi:10.1016/S0168-1923(99)00121-5.

    • Search Google Scholar
    • Export Citation
  • Higgins, C. W., Meneveau C. , and Parlange M. B. , 2007: The effect of filter dimension on the subgrid-scale stress, heat flux, and tensor alignments in the atmospheric surface layer. J. Atmos. Oceanic Technol., 24, 360375, doi:10.1175/JTECH1991.1.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Bound.-Layer Meteor., 42, 5578, doi:10.1007/BF00119875.

    • Search Google Scholar
    • Export Citation
  • Humphreys, E. R., Lafleur P. M. , Flanagan L. B. , Hedstrom N. , Syed K. H. , Glenn A. J. , and Granger R. , 2006: Summer carbon dioxide and water vapor fluxes across a range of northern peatlands. J. Geophys. Res., 111, G04011, doi:10.1029/2005JG000111.

    • Search Google Scholar
    • Export Citation
  • Ingham, D. B., and Pop I. , 2002: Transport Phenomena in Porous Media. Vol. II. Elsevier, 450 pp.

  • Isabelle, P.-E., 2014: Simplification de l’estimation des taux d’évapotranspiration sur les tourbières boréales par la quasi-neutralité de l’atmosphère. M.S. thesis, Centre Eau Terre Environnement, Institut national de la recherche scientifique, Université du Québec, 202 pp.

  • Itier, B., and Brunet Y. , 1996: Recent developments and present trends in evaporation research: A partial survey. Evapotranspiration and irrigation scheduling: Proceedings of the International Conference ASAE, C. Camp, E. Sadler, and R. Yoder, Eds., 120.

  • Katul, G. G., and Parlange M. B. , 1992: A Penman–Brutsaert model for wet surface evaporation. Water Resour. Res., 28, 121126, doi:10.1029/91WR02324.

    • Search Google Scholar
    • Export Citation
  • Kellner, E., 2001: Surface energy fluxes and control of evapotranspiration from a Swedish sphagnum mire. Agric. For. Meteor., 110 (2), 101123, doi:10.1016/S0168-1923(01)00283-0.

    • Search Google Scholar
    • Export Citation
  • Kim, J., and Verma S. B. , 1996: Surface exchange of water vapour between an open sphagnum fen and the atmosphere. Bound.-Layer Meteor., 79, 243264, doi:10.1007/BF00119440.

    • Search Google Scholar
    • Export Citation
  • Kleissl, J., Hong S.-H. , and Hendrickx J. M. , 2009: New Mexico scintillometer network: Supporting remote sensing and hydrologic and meteorological models. Bull. Amer. Meteor. Soc., 90, 207218, doi:10.1175/2008BAMS2480.1.

    • Search Google Scholar
    • Export Citation
  • Koerselman, W., and Beltman B. , 1988: Evapotranspiration from fens in relation to Penman’s potential free water evaporation (Eo) and pan evaporation. Aquat. Bot., 31, 307320, doi:10.1016/0304-3770(88)90019-8.

    • Search Google Scholar
    • Export Citation
  • Kotani, A., and Sugita M. , 2005: Seasonal variation of surface fluxes and scalar roughness of suburban land covers. Agric. For. Meteor., 135, 121, doi:10.1016/j.agrformet.2005.09.012.

    • Search Google Scholar
    • Export Citation
  • Lafleur, P. M., Roulet N. T. , Bubier J. L. , Frolking S. , and Moore T. R. , 2003: Interannual variability in the peatland–atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochem. Cycles, 17, 1036, doi:10.1029/2002GB001983.

    • Search Google Scholar
    • Export Citation
  • Lafleur, P. M., Hember R. A. , Admiral S. W. , and Roulet N. T. , 2005: Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada. Hydrol. Processes, 19, 35333550, doi:10.1002/hyp.5842.

    • Search Google Scholar
    • Export Citation
  • Leclerc, M. Y., Shaw R. H. , den Hartog G. , and Neumann H. H. , 1990: The influence of atmospheric stability on the budgets of the Reynolds stress and turbulent kinetic energy within and above a deciduous forest. J. Appl. Meteor., 29, 916933, doi:10.1175/1520-0450(1990)029<0916:TIOASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, H. Z., Feng J. W. , Järvi L. , and Vesala T. , 2012: Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing. Atmos. Chem. Phys., 12, 78817892, doi:10.5194/acp-12-7881-2012.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., Vickers D. , Edson J. , Wilczak J. M. , Hare J. , and Højstrup J. , 2001: Vertical structure of turbulence in offshore flow during RASEX. Bound.-Layer Meteor., 100, 4761, doi:10.1023/A:1018982828967.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., and Foken T. , 2011: Documentation and instruction manual of the eddy-covariance software package TK3. Tech. Rep., Universität Bayreuth, 60 pp.

  • Metzger, M., McKeon B. , and Holmes H. , 2007: The near-neutral atmospheric surface layer: Turbulence and non-stationarity. Philos. Trans. Roy. Soc. London, A365, 859876, doi:10.1098/rsta.2006.1946.

    • Search Google Scholar
    • Export Citation
  • Mölder, M., and Kellner E. , 2002: Excess resistance of bog surfaces in central Sweden. Agric. For. Meteor., 112, 2330, doi:10.1016/S0168-1923(02)00043-6.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Yaglom A. M. , 1971: Statistical Fluid Mechanics. Vol. I. MIT Press, 769 pp.

  • Monteith, J., 1965: Evaporation and environment. The State and Movement of Water in Living Organisms, G. E. Fogg, Ed., Symposia of the Society for Experimental Biology, Vol. 19, Cambridge University Press, 205–234.

  • Moriwaki, R., and Kanda M. , 2006: Scalar roughness parameters for a suburban area. J. Meteor. Soc. Japan, 84, 10631071, doi:10.2151/jmsj.84.1063.

    • Search Google Scholar
    • Export Citation
  • Nadeau, D. F., Pardyjak E. R. , Higgins C. W. , Huwald H. , and Parlange M. B. , 2013a: Flow during the evening transition over steep alpine slopes. Quart. J. Roy. Meteor. Soc., 139, 607624, doi:10.1002/qj.1985.

    • Search Google Scholar
    • Export Citation
  • Nadeau, D. F., Rousseau A. N. , Coursolle C. , Margolis H. A. , and Parlange M. B. , 2013b: Summer methane fluxes from a boreal bog in northern Québec, Canada, using eddy covariance measurements. Atmos. Environ., 81, 464474, doi:10.1016/j.atmosenv.2013.09.044.

    • Search Google Scholar
    • Export Citation
  • Nield, D. A., and Bejan A. , 2006: Convection in Porous Media. Springer-Verlag, 657 pp.

  • Novak, M., and Black T. , 1985: Theoretical determination of the surface energy balance and thermal regimes of bare soils. Bound.-Layer Meteor., 33, 313333, doi:10.1007/BF00116682.

    • Search Google Scholar
    • Export Citation
  • Novick, K. A., Stoy P. C. , Katul G. G. , Ellsworth D. S. , Siqueira M. B. , Juang J. , and Oren R. , 2004: Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia, 138, 259274, doi:10.1007/s00442-003-1388-z.

    • Search Google Scholar
    • Export Citation
  • Ochsner, T. E., Sauer T. J. , and Horton R. , 2007: Soil heat storage measurements in energy balance studies. Agron. J., 99, 311319, doi:10.2134/agronj2005.0103S.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. Routledge, 435 pp.

  • Omstedt, A., Meuller L. , and Nyberg L. , 1997: Interannual, seasonal and regional variations of precipitation and evaporation over the Baltic Sea. Ambio, 26 (8), 484492.

    • Search Google Scholar
    • Export Citation
  • Paavilainen, E., and Päivänen J. , 1995: Peatland Forestry: Ecology and Principles. Springer, 253 pp.

  • Pagowski, M., 2006: An iterative solution of flux–profile relationships in the surface layer for regional model applications. Atmos. Environ., 40, 68926897, doi:10.1016/j.atmosenv.2006.07.027.

    • Search Google Scholar
    • Export Citation
  • Park, S.-J., Park S.-U. , and Ho C.-H. , 2010: Roughness length of water vapor over land surfaces and its influence on latent heat flux. Terr. Atmos. Ocean. Sci., 21, 855867, doi:10.3319/TAO.2009.11.13.01(Hy).

    • Search Google Scholar
    • Export Citation
  • Parlange, M. B., Eichinger W. E. , and Albertson J. D. , 1995: Regional scale evaporation and the atmospheric boundary layer. Rev. Geophys., 33, 99124, doi:10.1029/94RG03112.

    • Search Google Scholar
    • Export Citation
  • Parmentier, F., Van der Molen M. , de Jeu R. , Hendriks D. , and Dolman A. , 2009: Fluxes and evaporation on a peatland in the Netherlands appear not affected by water table fluctuations. Agric. For. Meteor., 149, 12011208, doi:10.1016/j.agrformet.2008.11.007.

    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193A, 120145, doi:10.1098/rspa.1948.0037.

    • Search Google Scholar
    • Export Citation
  • Petrone, R. M., Price J. S. , Waddington J. , and Von Waldow H. , 2004: Surface moisture and energy exchange from a restored peatland, Québec, Canada. J. Hydrol., 295, 198210, doi:10.1016/j.jhydrol.2004.03.009.

    • Search Google Scholar
    • Export Citation
  • Petrone, R. M., Silins U. , and Devito K. , 2007: Dynamics of evapotranspiration from a riparian pond complex in the western boreal forest, Alberta, Canada. Hydrol. Processes, 21, 13911401, doi:10.1002/hyp.6298.

    • Search Google Scholar
    • Export Citation
  • Price, J. S., 1991: Evaporation from a blanket bog in a foggy coastal environment. Bound.-Layer Meteor., 57, 391406, doi:10.1007/BF00120056.

    • Search Google Scholar
    • Export Citation
  • Priestley, C., and Taylor R. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192, doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raddatz, R., Papakyriakou T. , Swystun K. , and Tenuta M. , 2009: Evapotranspiration from a wetland tundra sedge fen: Surface resistance of peat for land-surface schemes. Agric. For. Meteor., 149, 851861, doi:10.1016/j.agrformet.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Reichstein, M., and Coauthors, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biol., 11, 14241439, doi:10.1111/j.1365-2486.2005.001002.x.

    • Search Google Scholar
    • Export Citation
  • Roulet, N. T., Lafleur P. M. , Richard P. J. , Moore T. R. , Humphreys E. R. , and Bubier J. , 2007: Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biol., 13, 397411, doi:10.1111/j.1365-2486.2006.01292.x.

    • Search Google Scholar
    • Export Citation
  • Runkle, B., Wille C. , Gažovič M. , Wilmking M. , and Kutzbach L. , 2014: The surface energy balance and its drivers in a boreal peatland fen of northwestern Russia. J. Hydrol., 511, 359373, doi:10.1016/j.jhydrol.2014.01.056.

    • Search Google Scholar
    • Export Citation
  • Schwärzel, K., Renger M. , Sauerbrey R. , and Wessolek G. , 2002: Soil physical characteristics of peat soils. J. Plant Nutr. Soil Sci., 165, 479486, doi:10.1002/1522-2624(200208)165:4<479::AID-JPLN479>3.0.CO;2-8.

    • Search Google Scholar
    • Export Citation
  • Schwärzel, K., Šimůnek J. , van Genuchten M. T. , and Wessolek G. , 2006: Measurement modeling of soil-water dynamics evapotranspiration of drained peatland soils. J. Plant Nutr. Soil Sci., 169, 762774, doi:10.1002/jpln.200621992.

    • Search Google Scholar
    • Export Citation
  • Shimoyama, K., Hiyama T. , Fukushima Y. , and Inoue G. , 2004: Controls on evapotranspiration in a west Siberian bog. J. Geophys. Res., 109, D08111, doi:10.1029/2003JD004114.

    • Search Google Scholar
    • Export Citation
  • Silins, U., and Rothwell R. L. , 1998: Forest peatland drainage and subsidence affect soil water retention and transport properties in an Alberta peatland. Soil. Sci. Soc. Amer. J., 62, 10481056, doi:10.2136/sssaj1998.03615995006200040028x.

    • Search Google Scholar
    • Export Citation
  • Sonnentag, O., Van der Kamp G. , Barr A. , and Chen J. , 2010: On the relationship between water table depth and water vapor and carbon dioxide fluxes in a minerotrophic fen. Global Change Biol., 16, 17621776, doi:10.1111/j.1365-2486.2009.02032.x.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

  • Syed, K. H., Flanagan L. B. , Carlson P. J. , Glenn A. J. , and Van Gaalen K. E. , 2006: Environmental control of net ecosystem CO2 exchange in a treed, moderately rich fen in northern Alberta. Agric. For. Meteor., 140, 97114, doi:10.1016/j.agrformet.2006.03.022.

    • Search Google Scholar
    • Export Citation
  • Tanny, J., Cohen S. , Assouline S. , Lange F. , Grava A. , Berger D. , Teltch B. , and Parlange M. , 2008: Evaporation from a small water reservoir: Direct measurements and estimates. J. Hydrol., 351, 218229, doi:10.1016/j.jhydrol.2007.12.012.

    • Search Google Scholar
    • Export Citation
  • Vercauteren, N., Bou-Zeid E. , Parlange M. B. , Lemmin U. , Huwald H. , Selker J. , and Meneveau C. , 2008: Subgrid-scale dynamics of water vapour, heat and momentum over a lake. Bound.-Layer Meteor., 128, 205228, doi:10.1007/s10546-008-9287-9.

    • Search Google Scholar
    • Export Citation
  • Verry, E., 1988: Hydrology of wetlands and man’s influence on it. Proc. of the Int. Symp. on the Hydrology of Wetlands in Temperate and Cold Regions, Vol. 2, Joensuu, Finland, Academy of Finland National IHP Committee, 41–61.

  • Weiss, R., Shurpali N. J. , Sallantaus T. , Laiho R. , Laine J. , and Alm J. , 2006: Simulation of water table level and peat temperatures in boreal peatlands. Ecol. Modell., 192, 441456, doi:10.1016/j.ecolmodel.2005.07.016.

    • Search Google Scholar
    • Export Citation
  • Williams, C. A., and Coauthors, 2012: Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resour. Res., 48, W06523, doi:10.1029/2011WR011586.

    • Search Google Scholar
    • Export Citation
  • Wu, J., Kutzbach L. , Jager D. , Wille C. , and Wilmking M. , 2010: Evapotranspiration dynamics in a boreal peatland and its impact on the water and energy balance. J. Geophys. Res., 115, G04038, doi:10.1029/2009JG001075.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 720 265 14
PDF Downloads 215 73 4