Continental Runoff into the Oceans (1950–2008)

Elizabeth A. Clark University of Washington, Seattle, Washington

Search for other papers by Elizabeth A. Clark in
Current site
Google Scholar
PubMed
Close
,
Justin Sheffield Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Justin Sheffield in
Current site
Google Scholar
PubMed
Close
,
Michelle T. H. van Vliet Earth System Science, Wageningen University, Wageningen, Netherlands

Search for other papers by Michelle T. H. van Vliet in
Current site
Google Scholar
PubMed
Close
,
Bart Nijssen Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Bart Nijssen in
Current site
Google Scholar
PubMed
Close
, and
Dennis P. Lettenmaier University of Washington, Seattle, Washington

Search for other papers by Dennis P. Lettenmaier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A common term in the continental and oceanic components of the global water cycle is freshwater discharge to the oceans. Many estimates of the annual average global discharge have been made over the past 100 yr with a surprisingly wide range. As more observations have become available and continental-scale land surface model simulations of runoff have improved, these past estimates are cast in a somewhat different light. In this paper, a combination of observations from 839 river gauging stations near the outlets of large river basins is used in combination with simulated runoff fields from two implementations of the Variable Infiltration Capacity land surface model to estimate continental runoff into the world’s oceans from 1950 to 2008. The gauges used account for ~58% of continental areas draining to the ocean worldwide, excluding Greenland and Antarctica. This study estimates that flows to the world’s oceans globally are 44 200 (±2660) km3 yr−1 (9% from Africa, 37% from Eurasia, 30% from South America, 16% from North America, and 8% from Australia–Oceania). These estimates are generally higher than previous estimates, with the largest differences in South America and Australia–Oceania. Given that roughly 42% of ocean-draining continental areas are ungauged, it is not surprising that estimates are sensitive to the land surface and hydrologic model (LSM) used, even with a correction applied to adjust for model bias. The results show that more and better in situ streamflow measurements would be most useful in reducing uncertainties, in particular in the southern tip of South America, the islands of Oceania, and central Africa.

Current affiliation: Department of Geography, University of California, Los Angeles, Los Angeles, California.

Corresponding author address: Dennis P. Lettenmaier, Department of Geography, University of California, Los Angeles, 1255 Bunche Hall, P.O. Box 951524, Los Angeles, CA 90095. E-mail: dlettenm@ucla.edu

Abstract

A common term in the continental and oceanic components of the global water cycle is freshwater discharge to the oceans. Many estimates of the annual average global discharge have been made over the past 100 yr with a surprisingly wide range. As more observations have become available and continental-scale land surface model simulations of runoff have improved, these past estimates are cast in a somewhat different light. In this paper, a combination of observations from 839 river gauging stations near the outlets of large river basins is used in combination with simulated runoff fields from two implementations of the Variable Infiltration Capacity land surface model to estimate continental runoff into the world’s oceans from 1950 to 2008. The gauges used account for ~58% of continental areas draining to the ocean worldwide, excluding Greenland and Antarctica. This study estimates that flows to the world’s oceans globally are 44 200 (±2660) km3 yr−1 (9% from Africa, 37% from Eurasia, 30% from South America, 16% from North America, and 8% from Australia–Oceania). These estimates are generally higher than previous estimates, with the largest differences in South America and Australia–Oceania. Given that roughly 42% of ocean-draining continental areas are ungauged, it is not surprising that estimates are sensitive to the land surface and hydrologic model (LSM) used, even with a correction applied to adjust for model bias. The results show that more and better in situ streamflow measurements would be most useful in reducing uncertainties, in particular in the southern tip of South America, the islands of Oceania, and central Africa.

Current affiliation: Department of Geography, University of California, Los Angeles, Los Angeles, California.

Corresponding author address: Dennis P. Lettenmaier, Department of Geography, University of California, Los Angeles, 1255 Bunche Hall, P.O. Box 951524, Los Angeles, CA 90095. E-mail: dlettenm@ucla.edu
Save
  • Adam, J. C., and Lettenmaier D. P. , 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., Clark E. A. , Lettenmaier D. P. , and Wood E. F. , 2006: Correction of global precipitation products for orographic effects. J. Climate, 19, 1538, doi:10.1175/JCLI3604.1.

    • Search Google Scholar
    • Export Citation
  • Alsdorf, D. E., Rodríguez E. , and Lettenmaier D. P. , 2007: Measuring surface water from space. Rev. Geophys., 45, RG2002, doi:10.1029/2006RG000197.

    • Search Google Scholar
    • Export Citation
  • Baumgartner, A., and Reichel E. , 1975: The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Run-Off. Elsevier, 179 pp.

  • Becker, A., Finger P. , Meyer-Christoffer A. , Rudolf B. , Schamm K. , Schneider U. , and Ziese M. , 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, doi:10.5194/essd-5-71-2013.

    • Search Google Scholar
    • Export Citation
  • Beven, K., 1997: TOPMODEL: A critique. Hydrol. Processes, 11, 10691085, doi:10.1002/(SICI)1099-1085(199707)11:9<1069::AID-HYP545>3.0.CO;2-O.

    • Search Google Scholar
    • Export Citation
  • Beven, K., and Kirkby M. J. , 1979: A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24, 4369, doi:10.1080/02626667909491834.

    • Search Google Scholar
    • Export Citation
  • Bodo, B. A., 2001: Annotations for monthly discharge data for world rivers (excluding former Soviet Union). NCAR Rep., 111 pp. [Available online at http://rda.ucar.edu/datasets/ds552.1/docs/docglob.pdf.]

  • Bosilovich, M. G., and Schubert S. D. , 2001: Precipitation recycling over the central United States diagnosed from the GEOS-1 Data Assimilation System. J. Hydrometeor., 2, 2635, doi:10.1175/1525-7541(2001)002<0026:PROTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Critchfield, H. J., 1983: General Climatology.4th ed. Prentice Hall, 453 pp.

  • Dai, A., and Fung I. , 1993: Can climate variability contribute to the “missing” CO2 sink? Global Biogeochem. Cycles, 7, 599609, doi:10.1029/93GB01165.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and Trenberth K. E. , 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Qian T. , Trenberth K. E. , and Milliman J. D. , 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 27732791, doi:10.1175/2008JCLI2592.1.

    • Search Google Scholar
    • Export Citation
  • Döll, P., Kaspar F. , and Lehner B. , 2003: A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol., 270, 105134, doi:10.1016/S0022-1694(02)00283-4.

    • Search Google Scholar
    • Export Citation
  • DWD, 2011: GPCC full data reanalysis version 5. DWD/GPCC, accessed 30 January 2015. [Available online at ftp://ftp-anon.dwd.de/pub/data/gpcc/html/fulldata_download.html.]

  • Fekete, B., Vörösmarty C. J. , and Grabs W. , 2000: Report no. 22: Global composite runoff fields based on observed discharge and simulated water balances. Global Runoff Data Centre/Federal Institute of Hydrology (BfG) Rep., 108 pp.

  • Fekete, B., Vörösmarty C. J. , and Grabs W. , 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16, 15-1–15-10, doi:10.1029/1999GB001254.

    • Search Google Scholar
    • Export Citation
  • Fekete, B., Vörösmarty C. J. , Roads J. O. , and Willmott C. J. , 2004: Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17, 294304, doi:10.1175/1520-0442(2004)017<0294:UIPATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, H., and Coauthors, 2010: Water budget record from Variable Infiltration Capacity (VIC) model. Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records, 56 pp.

  • Gedney, N., Cox P. M. , Betts R. A. , Boucher O. , Huntingford C. , and Stott P. A. , 2006: Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439, 835838, doi:10.1038/nature04504.

    • Search Google Scholar
    • Export Citation
  • Gerten, D., Rost S. , von Bloh W. , and Lucht W. , 2008: Causes of change in 20th century global river discharge. Geophys. Res. Lett., 35, L20405, doi:10.1029/2008GL035258.

    • Search Google Scholar
    • Export Citation
  • Gleick, P. H., 1993: Water in Crisis: A Guide to the World’s Fresh Water Resources. Oxford University Press, 473 pp.

  • Grabs, W., de Couet T. , and Pauler J. , 1996: Report No. 10: Freshwater fluxes from continents into the world oceans based on data of the global runoff data base. Global Runoff Data Centre/Federal Institute of Hydrology (BfG) Rep., 228 pp.

  • Haddeland, I., Skaugen T. , and Lettenmaier D. P. , 2007: Hydrologic effects of land and water management in North America and Asia: 1700–1992. Hydrol. Earth Syst. Sci., 11, 10351045, doi:10.5194/hess-11-1035-2007.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2011: Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeor., 12, 869884, doi:10.1175/2011JHM1324.1.

    • Search Google Scholar
    • Export Citation
  • Harris, I., and Jones P. D. , 2014: CRU TS3.22: Climatic Research Unit (CRU) time-series (TS) version 3.22 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2013). NCAS British Atmospheric Data Centre, accessed 30 January 2015, doi:10.5285/18BE23F8-D252-482D-8AF9-5D6A2D40990C.

  • Harris, I., Jones P. D. , Osborn T. J. , and Lister D. H. , 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korzun, V. I., 1978: World Water Balance and Water Resources of the Earth (English translation). UNESCO, 663 pp.

  • Labat, D., Goddéris Y. , Probst J. L. , and Guyot J. L. , 2004: Evidence for global runoff increase related to climate warming. Adv. Water Resour., 27, 631642, doi:10.1016/j.advwatres.2004.02.020.

    • Search Google Scholar
    • Export Citation
  • Lammers, R. B., Shiklomanov A. I. , Vörösmarty C. J. , Fekete B. M. , and Peterson B. J. , 2001: Assessment of contemporary Arctic river runoff based on observational discharge records. J. Geophys. Res., 106, 33213334, doi:10.1029/2000JD900444.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., Verdin K. , and Jarvis A. , 2006: HydroSHEDS technical documentation. World Wildlife Fund, 27 pp. [Available online at http://hydrosheds.cr.usgs.gov/webappcontent/HydroSHEDS_TechDoc_v10.pdf.]

  • Li, H., Huang M. , Wigmosta M. S. , Ke Y. , Coleman A. M. , Leung L. R. , Wang A. , and Ricciuto D. M. , 2011: Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed. J. Geophys. Res., 116, D24120, doi:10.1029/2011JD016276.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Nolte-Holube R. , and Raschke E. , 1996: A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus,48, 708–721, doi:10.3402/tellusa.v48i5.12200.

  • Lohmann, D., Raschke E. , Nijssen B. , and Lettenmaier D. P. , 1998: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43, 131141, doi:10.1080/02626669809492107.

    • Search Google Scholar
    • Export Citation
  • L’Vovich, M. I., 1979: World Water Resources and their Future.Amer. Geophys. Union, 415 pp.

  • Macmillan, 1995: The Macmillan World Atlas.Macmillan, 415 pp.

  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based data set of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milliman, J. D., Farnsworth K. L. , Jones P. D. , Xu K. H. , and Smith L. C. , 2008: Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Global Planet. Change, 62, 187194, doi:10.1016/j.gloplacha.2008.03.001.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and Jones P. D. , 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol.,25, 693–712, doi:10.1002/joc.1181.

  • NCAR, 2013: Dai and Trenberth global river flow and continental discharge dataset. NCAR, accessed 6 January 2014. [Available online at www.cgd.ucar.edu/cas/catalog/surface/dai-runoff/index.html.]

  • New, M. G., Hulme M. , and Jones P. D. , 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, 829856, doi:10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • New, M. G., Hulme M. , and Jones P. D. , 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–1996 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B. N., Lettenmaier D. P. , Liang X. , Wetzel S. W. , and Wood E. F. , 1997: Streamflow simulation for continental-scale river basins. Water Resour. Res., 33, 711724, doi:10.1029/96WR03517.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B. N., O’Donnell G. M. , Lettenmaier D. P. , and Wood E. F. , 2001: Predicting the discharge of global rivers. J. Climate, 14, 33073323, doi:10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oki, T., Musiake K. , Matsuyama H. , and Masuda K. , 1995: Global atmospheric water balance and runoff from large river basins. Hydrol. Processes, 9, 655678, doi:10.1002/hyp.3360090513.

    • Search Google Scholar
    • Export Citation
  • Oki, T., Agata Y. , Kanae S. , Saruhashi T. , Yang D. , and Musiake K. , 2001: Global assessment of current water resources using total runoff integrated pathways. Hydrol. Sci. J., 46, 983995, doi:10.1080/02626660109492890.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/ TN-4611STR, 186 pp.

  • Reclus, E., 1888: The Earth. Vol. I, A New Physical Geography, Virtue, 500 pp.

  • Reichle, R. H., Koster R. D. , De Lannoy G. J. M. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Toure A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Schaner, N., Voisin N. , Nijssen B. , and Lettenmaier D. P. , 2012: The contribution of glacier melt to streamflow. Environ. Res. Lett., 7, 034029, doi:10.1088/1748-9326/7/3/034029.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Wood E. F. , 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Shiklomanov, I. A., 1999: World water resources and their use: A joint SHI/UNESCO product. Accessed 16 April 2014. [Available online at http://webworld.unesco.org/water/ihp/db/shiklomanov/.]

  • Shiklomanov, I. A., and Sokolov A. A. , 1985: Methodological basis of world water balance investigation and computation. New Approaches in Water Balance Computations, A. Van der Beken and A. Herrmann, Eds., IAHS Publ. 148, 77–92.

  • Syed, T. H., Famiglietti J. S. , and Chambers D. P. , 2009: GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J. Hydrometeor., 10, 2240, doi:10.1175/2008JHM993.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Smith L. , Qian T. , Dai A. , and Fasullo J. , 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Search Google Scholar
    • Export Citation
  • van Vliet, M. T. H., Yearsley J. R. , Franssen W. H. P. , Ludwig F. , Haddeland I. , Lettenmaier D. P. , and Kabat P. , 2012: Coupled daily streamflow and water temperature modelling in large river basins. Hydrol. Earth Syst. Sci., 16, 43034321, doi:10.5194/hess-16-4303-2012.

    • Search Google Scholar
    • Export Citation
  • van Vliet, M. T. H., Franssen W. H. P. , Yearsley J. R. , Ludwig F. , Haddeland I. , Lettenmaier D. P. , and Kabat P. , 2013: Global river discharge and water temperature under climate change. Global Environ. Change, 23, 450464, doi:10.1016/j.gloenvcha.2012.11.002.

    • Search Google Scholar
    • Export Citation
  • Voisin, N., Wood A. W. , and Lettenmaier D. P. , 2008: Evaluation of precipitation products for global hydrological prediction. J. Hydrometeor., 9, 388407, doi:10.1175/2007JHM938.1.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., Federer C. A. , and Schloss A. L. , 1998: Potential evaporation functions compared on U.S. watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. J. Hydrol., 207, 147169, doi:10.1016/S0022-1694(98)00109-7.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., Fekete B. M. , Meybeck M. , and Lammers R. B. , 2000: Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages. Global Biogeochem. Cycles, 14, 599621, doi:10.1029/1999GB900092.

    • Search Google Scholar
    • Export Citation
  • Water Systems Analysis Group, 2007: Potential simulated topological networks (STN-30p). Water Systems Analysis Group, accessed 22 July 2010. [Available online at www.wsag.unh.edu/Stn-30/stn-30.html.]

  • Weedon, G. P., Gomes S. , Viterbo P. , Österle H. , Adam J. C. , Bellouin N. , Boucher O. , and Best M. , 2010: The WATCH forcing data 1958–2001: A meteorological forcing dataset for land surface and hydrological models. WATCH Tech. Rep. 22, 41 pp. [Available online at http://www.eu-watch.org/publications/technical-reports/3.]

  • Weedon, G. P., and Coauthors, 2011: Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeor., 12, 823848, doi:10.1175/2011JHM1369.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1449 500 20
PDF Downloads 879 234 10