Comparing Evapotranspiration from Eddy Covariance Measurements, Water Budgets, Remote Sensing, and Land Surface Models over Canadaa,b

Shusen Wang cCanada Centre for Mapping and Earth Observation, Natural Resources Canada, Ottawa, Ontario, Canada

Search for other papers by Shusen Wang in
Current site
Google Scholar
PubMed
Close
,
Ming Pan dDepartment of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Ming Pan in
Current site
Google Scholar
PubMed
Close
,
Qiaozhen Mu eCollege of Forestry and Conservation, University of Montana, Missoula, Montana
fDepartment of Geographical Sciences, University of Maryland, College Park, College Park, Maryland

Search for other papers by Qiaozhen Mu in
Current site
Google Scholar
PubMed
Close
,
Xiaoying Shi gEnvironmental Sciences Division, and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee

Search for other papers by Xiaoying Shi in
Current site
Google Scholar
PubMed
Close
,
Jiafu Mao gEnvironmental Sciences Division, and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee

Search for other papers by Jiafu Mao in
Current site
Google Scholar
PubMed
Close
,
Christian Brümmer hThünen Institute of Climate-Smart Agriculture, Braunschweig, Germany

Search for other papers by Christian Brümmer in
Current site
Google Scholar
PubMed
Close
,
Rachhpal S. Jassal iBiometeorology and Soil Physics Group, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Rachhpal S. Jassal in
Current site
Google Scholar
PubMed
Close
,
Praveena Krishnan jAtmospheric Turbulence and Diffusion Division, NOAA, Oak Ridge, Tennessee
kOak Ridge Associated Universities, Oak Ridge, Tennessee

Search for other papers by Praveena Krishnan in
Current site
Google Scholar
PubMed
Close
,
Junhua Li cCanada Centre for Mapping and Earth Observation, Natural Resources Canada, Ottawa, Ontario, Canada

Search for other papers by Junhua Li in
Current site
Google Scholar
PubMed
Close
, and
T. Andrew Black iBiometeorology and Soil Physics Group, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by T. Andrew Black in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study compares six evapotranspiration ET products for Canada’s landmass, namely, eddy covariance EC measurements; surface water budget ET; remote sensing ET from MODIS; and land surface model (LSM) ET from the Community Land Model (CLM), the Ecological Assimilation of Land and Climate Observations (EALCO) model, and the Variable Infiltration Capacity model (VIC). The ET climatology over the Canadian landmass is characterized and the advantages and limitations of the datasets are discussed. The EC measurements have limited spatial coverage, making it difficult for model validations at the national scale. Water budget ET has the largest uncertainty because of data quality issues with precipitation in mountainous regions and in the north. MODIS ET shows relatively large uncertainty in cold seasons and sparsely vegetated regions. The LSM products cover the entire landmass and exhibit small differences in ET among them. Annual ET from the LSMs ranges from small negative values to over 600 mm across the landmass, with a countrywide average of 256 ± 15 mm. Seasonally, the countrywide average monthly ET varies from a low of about 3 mm in four winter months (November–February) to 67 ± 7 mm in July. The ET uncertainty is scale dependent. Larger regions tend to have smaller uncertainties because of the offset of positive and negative biases within the region. More observation networks and better quality controls are critical to improving ET estimates. Future techniques should also consider a hybrid approach that integrates strengths of the various ET products to help reduce uncertainties in ET estimation.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0189.s1.

Earth Science Sector Contribution Number 20140252.

Corresponding author address: Shusen Wang, Canada Centre for Mapping and Earth Observation, National Resources Canada, 560 Rochester St., Ottawa ON K1A 0E4, Canada. E-mail: shusen.wang@nrcan.gc.ca

Abstract

This study compares six evapotranspiration ET products for Canada’s landmass, namely, eddy covariance EC measurements; surface water budget ET; remote sensing ET from MODIS; and land surface model (LSM) ET from the Community Land Model (CLM), the Ecological Assimilation of Land and Climate Observations (EALCO) model, and the Variable Infiltration Capacity model (VIC). The ET climatology over the Canadian landmass is characterized and the advantages and limitations of the datasets are discussed. The EC measurements have limited spatial coverage, making it difficult for model validations at the national scale. Water budget ET has the largest uncertainty because of data quality issues with precipitation in mountainous regions and in the north. MODIS ET shows relatively large uncertainty in cold seasons and sparsely vegetated regions. The LSM products cover the entire landmass and exhibit small differences in ET among them. Annual ET from the LSMs ranges from small negative values to over 600 mm across the landmass, with a countrywide average of 256 ± 15 mm. Seasonally, the countrywide average monthly ET varies from a low of about 3 mm in four winter months (November–February) to 67 ± 7 mm in July. The ET uncertainty is scale dependent. Larger regions tend to have smaller uncertainties because of the offset of positive and negative biases within the region. More observation networks and better quality controls are critical to improving ET estimates. Future techniques should also consider a hybrid approach that integrates strengths of the various ET products to help reduce uncertainties in ET estimation.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0189.s1.

Earth Science Sector Contribution Number 20140252.

Corresponding author address: Shusen Wang, Canada Centre for Mapping and Earth Observation, National Resources Canada, 560 Rochester St., Ottawa ON K1A 0E4, Canada. E-mail: shusen.wang@nrcan.gc.ca

Supplementary Materials

    • Supplemental Materials (DOC 613.00 KB)
Save
  • Agriculture and Agri-Food Canada, 1996: Soil Landscapes of Canada, version 2.2. Centre for Land and Biological Resources Research, accessed 31 March 2003. [Available online at http://sis.agr.gc.ca/cansis/nsdb/slc/v2.2/index.html.]

    • Search Google Scholar
    • Export Citation
  • Brümmer, C., and Coauthors, 2012: How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric. For. Meteor., 153, 1430, doi:10.1016/j.agrformet.2011.04.008.

    • Search Google Scholar
    • Export Citation
  • Cleugh, H. A., Leuning R. , Mu Q. , and Running S. W. , 2007: Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ., 106, 285304, doi:10.1016/j.rse.2006.07.007.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Halbleib M. , Smith J. I. , Gibson W. P. , Doggett M. K. , Taylor G. H. , Curtis J. , and Pasteris P. P. , 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • De Kauwe, M., and Coauthors, 2013: Forest water use and water use efficiency at elevated CO2: A model–data intercomparison at two contrasting temperate forest FACE sites. Global Change Biol., 19, 17591779, doi:10.1111/gcb.12164.

    • Search Google Scholar
    • Export Citation
  • De Kauwe, M., and Coauthors, 2014: Where does the carbon go? A model—data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol., 203, 883899, doi:10.1111/nph.12847.

    • Search Google Scholar
    • Export Citation
  • Déry, S. J., Hernández-Henríquez M. A. , Burford J. E. , and Wood E. F. , 2009: Observational evidence of an intensifying hydrological cycle in northern Canada. Geophys. Res. Lett., 36, L13402, doi:10.1029/2009GL038852.

    • Search Google Scholar
    • Export Citation
  • Fernandes, R., Korolevych V. , and Wang S. , 2007: Trends in land evapotranspiration over Canada for the period 1960–2000 based on in situ climate observations and a land surface model. J. Hydrometeor., 8, 10161030, doi:10.1175/JHM619.1.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., Tu K. , and Baldocchi D. D. , 2008: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at FLUXNET sites. Remote Sens. Environ., 112, 901919, doi:10.1016/j.rse.2007.06.025.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287302, doi:10.1016/S0034-4257(02)00078-0.

    • Search Google Scholar
    • Export Citation
  • Githui, F., Selle B. , and Thayalakumaran T. , 2012: Recharge estimation using remotely sensed evapotranspiration in an irrigated catchment in southeast Australia. Hydrol. Processes, 26, 13791389, doi:10.1002/hyp.8274.

    • Search Google Scholar
    • Export Citation
  • Global Soil Data Task, 2000: Global Soil Data Products CD-ROM (IGBP-DIS). Oak Ridge National Laboratory Distributed Active Archive Center, accessed 22 May 2002. [Available online at http://daac.ornl.gov/SOILS/guides/igbp.html.]

  • Grant, R. F., and Coauthors, 2005: Intercomparison of techniques to model high temperature effects on CO2 and energy exchange in temperate and boreal coniferous forests. Ecol. Modell., 188, 217252, doi:10.1016/j.ecolmodel.2005.01.060.

    • Search Google Scholar
    • Export Citation
  • Grant, R. F., and Coauthors, 2006: Intercomparison of techniques to model water stress effects on CO2 and energy exchange in temperate and boreal deciduous forests. Ecol. Modell., 196, 289312, doi:10.1016/j.ecolmodel.2006.02.035.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., and Ignatov A. , 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543, doi:10.1080/014311698215333.

    • Search Google Scholar
    • Export Citation
  • Hamilton, A. S., 2008: Sources of uncertainty in Canadian low flow hydrometric data. Can. Water Resour. J., 33, 125136, doi:10.4296/cwrj3302125.

    • Search Google Scholar
    • Export Citation
  • Hamilton, A. S., and Moore R. D. , 2012: Quantifying uncertainty in streamflow records. Can. Water Resour. J., 37, 321, doi:10.4296/cwrj3701865.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., DeFries R. S. , Townshend J. R. G. , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364, doi:10.1080/014311600210209.

    • Search Google Scholar
    • Export Citation
  • Hanson, P. J., and Coauthors, 2004: Oak forest carbon and water simulations: Model intercomparisons and evaluations against independent data. Ecol. Monogr., 74, 443489, doi:10.1890/03-4049.

    • Search Google Scholar
    • Export Citation
  • Herschy, R. W., 1999: Uncertainties in hydrometric measurements. Hydrometry Principles and Practices, 2nd ed. R.W. Herschy, Ed., John Wiley & Sons, 355–370.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G., Frolking S. , Fearon M. , Moore B. , Shevliakova E. , Malyshev S. , Pacala S. , and Houghton R. , 2006: The underpinnings of land use history: Three centuries of global gridded land use transitions, wood harvest activity, and resulting secondary lands. Global Change Biol., 12, 12081229, doi:10.1111/j.1365-2486.2006.01150.x.

    • Search Google Scholar
    • Export Citation
  • Jassal, R. S., Black T. A. , Spittlehouse D. L. , Brümmer C. , and Nesic Z. , 2009: Evapotranspiration and water use efficiency in different-aged Pacific Northwest Douglas-fir stands. Agric. For. Meteor., 149, 11681178, doi:10.1016/j.agrformet.2009.02.004.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Milly P. C. D. , 1997: The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. J. Climate, 10, 15781591, doi:10.1175/1520-0442(1997)010<1578:TIBTAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnan, P., Black T. A. , Grant N. J. , Barr A. G. , Hogg E. T. H. , Jassal R. S. , and Morgenstern K. , 2006: Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agric. For. Meteor., 139, 208223, doi:10.1016/j.agrformet.2006.07.002.

    • Search Google Scholar
    • Export Citation
  • Krishnan, P., Meyers T. P. , Scott R. L. , Kennedy L. , and Heuer M. , 2012: Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America. Agric. For. Meteor.,153, 31–44, doi:10.1016/j.agrformet.2011.09.017.

  • Lathuillière, M. J., Johnson M. S. , and Donner S. D. , 2012: Water use by terrestrial ecosystems: Temporal variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil. Environ. Res. Lett., 7, 024024, doi:10.1088/1748-9326/7/2/024024.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., Thornton P. E. , Oleson K. W. , and Bonan G. B. , 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., 8, 862880, doi:10.1175/JHM596.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • Loarie, S. R., Lobell D. B. , Asner G. P. , Mu Q. , and Field C. B. , 2011: Direct impacts on local climate of expanding sugarcane in Brazil. Nat. Climate Change, 1, 105109, doi:10.1038/nclimate1067.

    • Search Google Scholar
    • Export Citation
  • Long, D., Longuevergne L. , and Scanlon B. R. , 2014: Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res., 50, 11311151, doi:10.1002/2013WR014581.

    • Search Google Scholar
    • Export Citation
  • Los, S. O., and Coauthors, 2000: A global 9-yr biophysical land surface dataset from NOAA AVHRR data. J. Hydrometeor., 1, 183199, doi:10.1175/1525-7541(2000)001<0183:AGYBLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., Brasnett B. , and Gagnon S. , 2007: A Canadian precipitation analysis (CaPA) project: Description and preliminary results. Atmos.–Ocean, 45, 117, doi:10.3137/ao.450101.

    • Search Google Scholar
    • Export Citation
  • Mao, J., Thornton P. E. , Shi X. , Zhao M. , and Post W. M. , 2012: Remote sensing evaluation of CLM4 GPP for the period 2000–09. J. Climate, 25, 53275342, doi:10.1175/JCLI-D-11-00401.1.

    • Search Google Scholar
    • Export Citation
  • Mao, J., Shi X. , Thornton P. , Hoffman F. , Zhu Z. , and Myneni R. , 2013: Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982–2009. Remote Sens., 5, 14841497, doi:10.3390/rs5031484.

    • Search Google Scholar
    • Export Citation
  • McKenney, D. W., Pedlar J. H. , Papadopol P. , and Hutchinson M. F. , 2006: Development of 1901–2000 historical monthly climate models for Canada and the United States. Agric. For. Meteor., 138, 6981, doi:10.1016/j.agrformet.2006.03.012.

    • Search Google Scholar
    • Export Citation
  • McKenney, D. W., and Coauthors, 2011: Customized spatial climate models for North America. Bull. Amer. Meteor. Soc., 92, 16111622, doi:10.1175/2011BAMS3132.1.

    • Search Google Scholar
    • Export Citation
  • Mi, N., Yu G. R. , Wen X. F. , Sun X. M. , Wang S. , Zhang L. M. , and Song X. , 2009: Use of ecosystem flux data and a simulation model to examine seasonal drought effects on a subtropical coniferous forest. Asia-Pac. J. Atmos. Sci., 45, 207220.

    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and White R. A. , 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact.,2, doi:10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mlynowski, T. J., Hernández-Henríquez M. A. , and Déry S. J. , 2011: An evaluation of hydrometric monitoring across the Canadian pan-Arctic region, 1950–2008. Hydrol. Res., 42, 479490, doi:10.2166/nh.2011.105.

    • Search Google Scholar
    • Export Citation
  • Molders, N., and Raabe A. , 1996: Numerical investigations on the influence of subgrid-scale surface heterogeneity on evapotranspiration and cloud processes. J. Appl. Meteor., 35, 782795, doi:10.1175/1520-0450(1996)035<0782:NIOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., and Unsworth M. H. , 1990: Principles of Environmental Physics. 2nd ed. Routledge, 291 pp.

  • Montenegro, A., Eby M. , Mu Q. , Mulligan M. , Weaver A. J. , Wiebe E. C. , and Zhao M. , 2009: The net carbon drawdown of small scale afforestation from satellite observations. Global Planet. Change, 69, 195204, doi:10.1016/j.gloplacha.2009.08.005.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., Heinsch F. A. , Zhao M. , and Running S. W. , 2007a: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536, doi:10.1016/j.rse.2007.04.015.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., Zhao M. , Heinsch F. A. , Liu M. , Tian H. , and Running S. W. , 2007b: Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. J. Geophys. Res., 112, G01012, doi:10.1029/2006JG000179.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., Zhao M. , and Running S. W. , 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, doi:10.1016/j.rse.2011.02.019.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., and Coauthors, 2002: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83, 214231, doi:10.1016/S0034-4257(02)00074-3.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., doi:10.5065/D6FB50WZ.

  • Pan, M., and Wood E. F. , 2013: Inverse streamflow routing. Hydrol. Earth Syst. Sci., 17, 45774588, doi:10.5194/hess-17-4577-2013.

  • Pan, M., Sahoo A. K. , Troy T. J. , Vinukollu R. K. , Sheffield J. , and Wood E. F. , 2012: Multisource estimation of long-term terrestrial water budget for major global river basins. J. Climate, 25, 31913206, doi:10.1175/JCLI-D-11-00300.1.

    • Search Google Scholar
    • Export Citation
  • Pavlic, G., Fernandes R. , Chen W. , Fraser R. , and Leblanc S. G. , 2002: Methods for deriving Canada wide geo-spatial datasets in support of environmental monitoring and modelling. ISPRS Commission IV Symp. Joint Int. Symp. on Geospatial Theory, Processing and Applications, Ottawa, ON, Canada, ISPRS, 6 pp. [Available online at www.isprs.org/proceedings/XXXIV/part4/pdfpapers/384.pdf.]

  • Renger, M., Strebel O. , Wessolek G. , and Duynisveld W. H. M. , 2007: Evapotranspiration and groundwater recharge—A case study for different climate, crop patterns, soil properties and groundwater depth conditions. J. Plant Nutr. Soil Sci., 149, 371381, doi:10.1002/jpln.19861490403.

    • Search Google Scholar
    • Export Citation
  • Ryu, Y., Baldocchi D. D. , Ma S. , and Hehn T. , 2008: Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. J. Geophys. Res., 113, D09104, doi:10.1029/2007JD009263.

    • Search Google Scholar
    • Export Citation
  • Salomon, J., Schaaf C. B. , Strahler A. H. , Gao F. , and Jin Y. , 2006: Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the Aqua and Terra platforms. IEEE Trans. Geosci. Remote Sens., 44, 15551565, doi:10.1109/TGRS.2006.871564.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens. Environ., 83, 135148, doi:10.1016/S0034-4257(02)00091-3.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1982: Methods of correction for systematic error in point precipitation measurement for operational use. Operational Hydrology Rep. 21/WMO 589, 91 pp.

  • Sheffield, J., and Wood E. F. , 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Shi, X., Mao J. , Thornton P. E. , and Huang M. , 2013: Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model. Environ. Res. Lett., 8, 024012, doi:10.1088/1748-9326/8/2/024012.

    • Search Google Scholar
    • Export Citation
  • Spence, C., 2002: Streamflow variability (1965 to 1998) in five Northwest Territories and Nunavut rivers. Can. Water Resour. J., 27, 135154, doi:10.4296/cwrj2702135.

    • Search Google Scholar
    • Export Citation
  • St. Jacques, J.-M., and Sauchyn D. J. , 2009: Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett., 36, L01401, doi:10.1029/2008GL035822.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Zimmermann N. E. , 2007: An improved canopy integration scheme for a land surface model with prognostic canopy structure. J. Climate, 20, 39023923, doi:10.1175/JCLI4222.1.

    • Search Google Scholar
    • Export Citation
  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103, 279300, doi:10.1016/S0168-1923(00)00123-4.

    • Search Google Scholar
    • Export Citation
  • Viovy, N., 2011: CRUNCEP dataset. Accessed 1 August 2013. [Available online at http://dods.extra.cea.fr/store/p529viov/cruncep/V4_1901_2012/.]

  • Walvoord, M. A., Voss C. I. , and Wellman T. P. , 2012: Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats basin, Alaska, United States. Water Resour. Res., 48, W07524, doi:10.1029/2011WR011595.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Mao J. , Dickinson R. , Shi X. , Post W. , Zhu Z. , and Myneni R. B. , 2013: Evaluation of CLM4 solar radiation partitioning scheme using remote sensing and site level FPAR datasets. Remote Sens., 5, 28572882, doi:10.3390/rs5062857.

    • Search Google Scholar
    • Export Citation
  • Wang, S., 2005: Dynamics of land surface albedo for a boreal forest and its simulation. Ecol. Modell., 183, 477494, doi:10.1016/j.ecolmodel.2004.10.001.

    • Search Google Scholar
    • Export Citation
  • Wang, S., 2008: Simulation of evapotranspiration and its response to plant water and CO2 transfer dynamics. J. Hydrometeor., 9, 426443, doi:10.1175/2007JHM918.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and Davidson A. , 2007: Impact of climate variations on surface albedo of a temperate grassland. Agric. For. Meteor, 142, 133142, doi:10.1016/j.agrformet.2006.03.027.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Grant R. F. , Verseghy D. L. , and Black T. A. , 2001: Modelling plant carbon and nitrogen dynamics of a boreal aspen forest in CLASS—The Canadian Land Surface Scheme. Ecol. Modell., 142, 135154, doi:10.1016/S0304-3800(01)00284-8.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Grant R. F. , Verseghy D. L. , and Black T. A. , 2002a: Modelling carbon-coupled energy and water dynamics of a boreal aspen forest in a general circulation model land surface scheme. Int. J. Climatol., 22, 12491265, doi:10.1002/joc.776.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Grant R. F. , Verseghy D. L. , and Black T. A. , 2002b: Modelling carbon dynamics of boreal forest ecosystems using the Canadian Land Surface Scheme. Climatic Change, 55, 451477, doi:10.1023/A:1020780211008.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Trishchenko A. P. , Khlopenkov K. V. , and Davidson A. , 2006: Comparison of International Panel on Climate Change Fourth Assessment Report climate model simulations of surface albedo with satellite products over northern latitudes. J. Geophys. Res., 111, D21108, doi:10.1029/2005JD006728.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Trishchenko A. P. , and Sun X. , 2007: Simulation of canopy radiation transfer and surface albedo in the EALCO model. Climate Dyn., 29, 615632, doi:10.1007/s00382-007-0252-y.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Yang Y. , Trishchenko A. P. , Barr A. G. , Black T. A. , and McCaughey H. , 2009: Modelling the response of canopy stomatal conductance to humidity. J. Hydrometeor., 10, 521532, doi:10.1175/2008JHM1050.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Yang Y. , and Rivera A. , 2013: Spatial and seasonal variations in actual evapotranspiration over Canada’s landmass. Hydrol. Earth Syst. Sci., 17, 35613575, doi:10.5194/hess-17-3561-2013.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Huang J. , Li J. , Rivera A. , McKenney D. W. , and Sheffield J. , 2014a: Assessment of water budget for sixteen large drainage basins in Canada. J. Hydrol., 512, 115, doi:10.1016/j.jhydrol.2014.02.058.

    • Search Google Scholar
    • Export Citation
  • Wang, S., McKenney D. W. , Shang J. , and Li J. , 2014b: A national-scale assessment of long-term water budget closures for Canada’s watersheds. J. Geophys. Res. Atmos., 119, 87128725, doi:10.1002/2014JD021951.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Huang J. , Yang D. , Pavlic G. , and Li J. , 2015: Long-term water budget imbalances and error sources for cold region drainage basins. Hydrol. Processes, 29, 21252136, doi:10.1002/hyp.10343.

    • Search Google Scholar
    • Export Citation
  • Widlowski, J.-L., and Coauthors, 2011: RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models. J. Geophys. Res., 116, G02019, doi:10.1029/2010JG001511.

    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Guide to meteorological instruments and methods of observation. 7th ed. World Meteorological Organization Rep. WMO 8, 680 pp. [Available online at www.wmo.int/pages/prog/gcos/documents/gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf.]

  • Wood, E. F., Lettenmaier D. P. , and Zartarian V. G. , 1992: A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res., 97, 27172728, doi:10.1029/91JD01786.

    • Search Google Scholar
    • Export Citation
  • Xiong, Y. J., and Qiu G. Y. , 2014: Simplifying the revised three-temperature model for remotely estimating regional evapotranspiration and its application to a semi-arid steppe. Int. J. Remote Sens., 35, 20032027, doi:10.1080/01431161.2014.885149.

    • Search Google Scholar
    • Export Citation
  • Zaehle, S., and Coauthors, 2014: Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment Studies. New Phytol., 202, 803822, doi:10.1111/nph.12697.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., Shen S. , Wen X. , Sun X. , and Mi N. , 2012: Flux footprint of carbon dioxide and vapor exchange over the terrestrial ecosystem: A review. Acta Ecol. Sin.,32, 7622–7633, doi:10.5846/stxb201111051673.

  • Zhang, Y., Wang S. , Barr A. G. , and Black T. A. , 2008: Impact of snow cover on soil temperature and its simulation in the EALCO model. Cold Reg. Sci. Technol., 52, 355370, doi:10.1016/j.coldregions.2007.07.001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4173 1982 188
PDF Downloads 1646 255 20