Using High-Resolution Numerical Weather Forecasts to Improve Remotely Sensed Rainfall Estimates: The Case of the 2013 Colorado Flash Flood

E. I. Nikolopoulos Innovative Technologies Center S.A., Athens, Greece

Search for other papers by E. I. Nikolopoulos in
Current site
Google Scholar
PubMed
Close
,
N. S. Bartsotas Department of Physics, University of Athens, Athens, Greece

Search for other papers by N. S. Bartsotas in
Current site
Google Scholar
PubMed
Close
,
E. N. Anagnostou Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by E. N. Anagnostou in
Current site
Google Scholar
PubMed
Close
, and
G. Kallos Department of Physics, University of Athens, Athens, Greece

Search for other papers by G. Kallos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The September 2013 flash flood–triggering rainfall event in Colorado highlighted the strong underestimation of remote sensing techniques over mountainous terrain. In this work, the use of high-resolution rainfall forecasts for adjusting weather radar– [Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation (Q3)] and satellite-based [CPC morphing technique (CMORPH) and TRMM 3B42RT] rainfall estimates is examined. Evaluation of the adjustment procedures is based on the NCEP Stage IV product. Results show that 1-km-grid-resolution rainfall forecasts provided by a numerical weather prediction model [Regional Atmospheric Modeling System and Integrated Community Limited Area Modeling System (RAMS-ICLAMS)] adequately captured total rainfall amounts during the event and could therefore be used to adjust biases in radar and satellite rainfall estimates. Two commonly used adjustment procedures according to 1) mean field bias and 2) probability density function matching are examined. Findings indicate that both procedures are successful in improving the original radar and satellite rainfall estimates, with the first method consistently providing the highest bias reduction while the second exhibits higher improvement in RMSE and correlation.

Corresponding author address: Efthymios I. Nikolopoulos, Department of Land, Environment, Agriculture and Forestry, University of Padua, Campus di Agripolis, Viale dell’Università 16, 35020 Legnaro PD, Italy. E-mail: efthymios.nikolopoulos@unipd.it

Abstract

The September 2013 flash flood–triggering rainfall event in Colorado highlighted the strong underestimation of remote sensing techniques over mountainous terrain. In this work, the use of high-resolution rainfall forecasts for adjusting weather radar– [Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation (Q3)] and satellite-based [CPC morphing technique (CMORPH) and TRMM 3B42RT] rainfall estimates is examined. Evaluation of the adjustment procedures is based on the NCEP Stage IV product. Results show that 1-km-grid-resolution rainfall forecasts provided by a numerical weather prediction model [Regional Atmospheric Modeling System and Integrated Community Limited Area Modeling System (RAMS-ICLAMS)] adequately captured total rainfall amounts during the event and could therefore be used to adjust biases in radar and satellite rainfall estimates. Two commonly used adjustment procedures according to 1) mean field bias and 2) probability density function matching are examined. Findings indicate that both procedures are successful in improving the original radar and satellite rainfall estimates, with the first method consistently providing the highest bias reduction while the second exhibits higher improvement in RMSE and correlation.

Corresponding author address: Efthymios I. Nikolopoulos, Department of Land, Environment, Agriculture and Forestry, University of Padua, Campus di Agripolis, Viale dell’Università 16, 35020 Legnaro PD, Italy. E-mail: efthymios.nikolopoulos@unipd.it
Save
  • Barahona, D., and Nenes A. , 2009: Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation—Polydisperse ice nuclei. Atmos. Chem. Phys., 9, 59335948, doi:10.5194/acp-9-5933-2009.

    • Search Google Scholar
    • Export Citation
  • Boushaki, F. I., Hsu K.-L. , Sorooshian S. , Park G.-H. , Mahani S. , and Shi W. , 2009: Bias adjustment of satellite precipitation estimation using ground-based measurement: A case study evaluation over the southwestern United States. J. Hydrometeor., 10, 12311242, doi:10.1175/2009JHM1099.1.

    • Search Google Scholar
    • Export Citation
  • Chumchean, S., Sharma A. , and Seed A. , 2006: An integrated approach to error correction for real-time radar-rainfall estimation. J. Atmos. Oceanic Technol., 23, 6779, doi:10.1175/JTECH1832.1.

    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Fountoukis, C., and Nenes A. , 2005: Continued development of a cloud droplet formation parameterization for global climate models. J. Geophys. Res., 110, D11212, doi:10.1029/2004JD005591.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., Breidenbach J. P. , Seo D.-J. , Miller D. A. , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, doi:10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Coauthors, 2015: The Great Colorado Flood of September 2013. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00241.1, in press.

    • Search Google Scholar
    • Export Citation
  • Goudenhoofdt, E., and Delobbe L. , 2009: Evaluation of radar–gauge merging methods for quantitative precipitation estimates. Hydrol. Earth Syst. Sci., 13, 195203, doi:10.5194/hess-13-195-2009.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Henschke A. , and Adler R. F. , 2009: Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmos. Res., 94, 373388, doi:10.1016/j.atmosres.2009.06.015.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2014: Performance of operational model precipitation forecast guidance during the 2013 Colorado front-range floods. Mon. Wea. Rev., 142, 26092618, doi:10.1175/MWR-D-14-00007.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., Mlawer E. J. , Clough S. A. , and Morcrette J.-J. , 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105, 14 87314 890, doi:10.1029/2000JD900091.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., 1987: Cokriging radar-rainfall and rain gage data. J. Geophys. Res., 92, 95719580, doi:10.1029/JD092iD08p09571.

  • Kushta, J., Kallos G. , Astitha M. , Solomos S. , Spyrou C. , Mitsakou C. , and Lelieveld J. , 2014: Impact of natural aerosols on atmospheric radiation and consequent feedbacks with the meteorological and photochemical state of the atmosphere. J. Geophys. Res. Atmos.,119, 1463–1491, doi:10.1002/2013JD020714.

  • Lavers, D. A., and Villarini G. , 2013: Were global numerical weather prediction systems capable of forecasting the extreme Colorado rainfall of 9–16 September 2013? Geophys. Res. Lett., 40, 64056410, doi:10.1002/2013GL058282.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/pdfpapers/83847.pdf.]

  • Meyers, M. P., Walko R. L. , Harrington J. Y. , and Cotton W. R. , 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339, doi:10.1016/S0169-8095(97)00018-5.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Müller, M. F., and Thompson S. E. , 2013: Bias adjustment of satellite rainfall data through stochastic modeling: Methods development and application to Nepal. Adv. Water Resour., 60, 121134, doi:10.1016/j.advwatres.2013.08.004.

    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., Anagnostou E. N. , and Borga M. , 2013: Using high-resolution satellite rainfall products to simulate a major flash flood event in northern Italy. J. Hydrometeor., 14, 171185, doi:10.1175/JHM-D-12-09.1.

    • Search Google Scholar
    • Export Citation
  • Seo, D.-J., and Breidenbach J. P. , 2002: Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements. J. Hydrometeor., 3, 93111, doi:10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Baeck M. L. , Steiner M. , and Miller A. J. , 1996: Catastrophic rainfall from an upslope thunderstorm in the central Appalachians: The Rapidan storm of June 27, 1995. Water Resour. Res., 32, 30993113, doi:10.1029/96WR02107.

    • Search Google Scholar
    • Export Citation
  • Solomos, S., Kallos G. , Kushta J. , Astitha M. , Tremback C. , Nenes A. , and Levin Z. , 2011: An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation. Atmos. Chem. Phys., 11, 873892, doi:10.5194/acp-11-873-2011.

    • Search Google Scholar
    • Export Citation
  • Stampoulis, D., Anagnostou E. N. , and Nikolopoulos E. I. , 2013: Assessment of high-resolution satellite-based rainfall estimates over the Mediterranean during heavy precipitation events. J. Hydrometeor., 14, 15001514, doi:10.1175/JHM-D-12-0167.1.

    • Search Google Scholar
    • Export Citation
  • Tesfagiorgis, K., Mahani S. E. , Krakauer N. Y. , and Khanbilvardi R. , 2011: Bias correction of satellite rainfall estimates using a radar–gauge product—A case study in Oklahoma (USA). Hydrol. Earth Syst. Sci., 15, 26312647, doi:10.5194/hess-15-2631-2011.

    • Search Google Scholar
    • Export Citation
  • Wang, G., Liu L. , and Ding Y. , 2012: Improvement of radar quantitative precipitation estimation based on real-time adjustments to Z–R relationships and inverse distance weighting correction schemes. Adv. Atmos. Sci., 29, 575584, doi:10.1007/s00376-011-1139-8.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and Pollock D. M. , 1974: Rainfall measurements during Hurricane Agnes by three overlapping radars. J. Appl. Meteor., 13, 835844, doi:10.1175/1520-0450(1974)013<0835:RMDHAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yin, Z.-Y., Zhang X. , Liu X. , Colella M. , and Chen X. , 2008: An assessment of the biases of satellite rainfall estimates over the Tibetan Plateau and correction methods based on topographic analysis. J. Hydrometeor., 9, 301326, doi:10.1175/2007JHM903.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Anagnostou E. N. , Frediani M. , Solomos S. , and Kallos G. , 2013: Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas. J. Hydrometeor., 14, 18441858, doi:10.1175/JHM-D-12-0174.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 751 222 17
PDF Downloads 202 43 0