Assessment of the Spatial and Seasonal Variation of the Error–Intensity Relationship in Satellite-Based Precipitation Measurements Using an Adaptive Parametric Model

Hao Liu Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Hao Liu in
Current site
Google Scholar
PubMed
Close
,
Soroosh Sorooshian Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Soroosh Sorooshian in
Current site
Google Scholar
PubMed
Close
, and
Xiaogang Gao Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Xiaogang Gao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Studies have been reported about the efficacy of satellites for measuring precipitation and about quantifying their errors. Based on these studies, the errors are associated with a number of factors, among them, intensity, location, climate, and season of the year. Several error models have been proposed to assess the relationship between the error and the rainfall intensity. However, it is unknown whether these models are adaptive to different seasons, different regions, or different types of satellite-based estimates. Therefore, how the error–intensity relationship varies with the season or region is unclear. To investigate these issues, a parametric joint pdf model is proposed to analyze and study the 9-yr satellite-derived precipitation datasets of Climate Prediction Center (CPC) morphing technique (CMORPH); PERSIANN; and the real-time TRMM product 3B42, version 7 (TRMM-3B42-RTV7). The NEXRAD Stage IV product is the ground reference. The adaptability of the proposed model is verified by applying it to three locations (Oklahoma, Montana, and Florida) and by applying it to cold season, warm season, and the entire year. Then, the heteroscedasticities in the errors of satellite-based precipitation measurements are investigated using the proposed model under those scenarios. The results show that the joint pdfs have the same formulation under these scenarios, whereas their parameter sets were adaptively adjusted. This parametric model reveals detailed information about the spatial and seasonal variations of the satellite-based precipitation measurements. It is found that the shape of the conditional pdf shifts across the intensity ranges. At the ~10–20 mm day−1 range, the conditional pdf is L shaped, while at the ~40–60 mm day−1 range, it becomes more bell shaped. It is also concluded that no single satellite-based precipitation product outperforms others with respect to the different scenarios (i.e., seasons, regions, and climates).

Corresponding author address: Hao Liu, Department of Civil and Environmental Engineering, University of California, Irvine, 4130 Engineering Gateway, Office EH 5308, Mail Code 2175, Irvine, CA 92697. E-mail: liuh1@uci.edu

Abstract

Studies have been reported about the efficacy of satellites for measuring precipitation and about quantifying their errors. Based on these studies, the errors are associated with a number of factors, among them, intensity, location, climate, and season of the year. Several error models have been proposed to assess the relationship between the error and the rainfall intensity. However, it is unknown whether these models are adaptive to different seasons, different regions, or different types of satellite-based estimates. Therefore, how the error–intensity relationship varies with the season or region is unclear. To investigate these issues, a parametric joint pdf model is proposed to analyze and study the 9-yr satellite-derived precipitation datasets of Climate Prediction Center (CPC) morphing technique (CMORPH); PERSIANN; and the real-time TRMM product 3B42, version 7 (TRMM-3B42-RTV7). The NEXRAD Stage IV product is the ground reference. The adaptability of the proposed model is verified by applying it to three locations (Oklahoma, Montana, and Florida) and by applying it to cold season, warm season, and the entire year. Then, the heteroscedasticities in the errors of satellite-based precipitation measurements are investigated using the proposed model under those scenarios. The results show that the joint pdfs have the same formulation under these scenarios, whereas their parameter sets were adaptively adjusted. This parametric model reveals detailed information about the spatial and seasonal variations of the satellite-based precipitation measurements. It is found that the shape of the conditional pdf shifts across the intensity ranges. At the ~10–20 mm day−1 range, the conditional pdf is L shaped, while at the ~40–60 mm day−1 range, it becomes more bell shaped. It is also concluded that no single satellite-based precipitation product outperforms others with respect to the different scenarios (i.e., seasons, regions, and climates).

Corresponding author address: Hao Liu, Department of Civil and Environmental Engineering, University of California, Irvine, 4130 Engineering Gateway, Office EH 5308, Mail Code 2175, Irvine, CA 92697. E-mail: liuh1@uci.edu
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., Bardossy A. , and Habib E. , 2010: Copula-based uncertainty modelling: application to multisensor precipitation estimates. Hydrol. Processes, 24, 21112124, doi:10.1002/hyp.7632.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., Behrangi A. , Sorooshian S. , Hsu K. , and Amitai E. , 2011: Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J. Geophys. Res., 116, D02115, doi:10.1029/2010JD014741.

    • Search Google Scholar
    • Export Citation
  • Buarque, D. C., de Paiva R. C. D. , Clarke R. T. , and Mendes C. A. B. , 2011: A comparison of Amazon rainfall characteristics derived from TRMM, CMORPH and the Brazilian national rain gauge network. J. Geophys. Res., 116, D19105, doi:10.1029/2011JD016060.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., Krajewski W. F. , and Villarini G. , 2007: Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeor., 8, 13251347, doi:10.1175/2007JHM814.1.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., Sorooshian S. , and Gupta V. , 1992: Effective and efficient global optimization for conceptual rainfall–runoff models. Water Resour. Res., 28, 10151031, doi:10.1029/91WR02985.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., Gupta V. K. , and Sorooshian S. , 1993: Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl., 76, 501521, doi:10.1007/BF00939380.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 47, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., Breidenbach J. P. , Seo D.-J. , Miller D. A. , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395, doi:10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, Y. C., and Liu M. F. , 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837849, doi:10.5194/hess-17-837-2013.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., and Krajewski W. F. , 2005: Modeling distribution of temporal sampling errors in area-time-averaged rainfall estimates. Atmos. Res., 73, 243259, doi:10.1016/j.atmosres.2004.11.004.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., and Krajewski W. F. , 2007: Application of copulas to modeling temporal sampling errors in satellite-derived rainfall estimates. J. Hydrol. Eng., 12, 404408, doi:10.1061/(ASCE)1084-0699(2007)12:4(404).

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., Krajewski W. F. , Morrissey M. L. , Huffman G. J. , and Adler R. F. , 2005: A detailed evaluation of GPCP 1° daily rainfall estimates over the Mississippi River basin. J. Appl. Meteor., 44, 665681, doi:10.1175/JAM2233.1.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., Over T. M. , and Krajewski W. F. , 2006: Comparison of the scaling characteristics of rainfall derived from space-based and ground-based radar observations. J. Hydrometeor., 7, 12771294, doi:10.1175/JHM549.1.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., Liao G.-Y. , and Yan J. , 2011: Nonparametric error model for a high resolution satellite rainfall product. Water Resour. Res., 47, W07504, doi:10.1029/2010WR009667.

    • Search Google Scholar
    • Export Citation
  • Genest, C., Rémillard B. , and Beaudoin D. , 2009: Goodness-of-fit tests for copulas: A review and a power study. Insur. Math. Econ., 44, 199213, doi:10.1016/j.insmatheco.2007.10.005.

    • Search Google Scholar
    • Export Citation
  • Herr, H. D., and Krzysztofowicz R. , 2005: Generic probability distribution of rainfall in space: The bivariate model. J. Hydrol., 306, 234263, doi:10.1016/j.jhydrol.2004.09.011.

    • Search Google Scholar
    • Export Citation
  • Hirpa, F. A., Gebremichael M. , and Hopson T. , 2010: Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteor. Climatol., 49, 10441051, doi:10.1175/2009JAMC2298.1.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Anagnostou E. N. , 2006: A two-dimensional satellite rainfall error model. IEEE Trans. Geosci. Remote Sens., 44, 15111522, doi:10.1109/TGRS.2005.863866.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 1997: Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36, 11911201, doi:10.1175/1520-0450(1997)036<1191:EORMSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, C., Singh V. P. , and Mishra A. K. , 2013: A bivariate mixed distribution with a heavy-tailed component and its application to single-site daily rainfall simulation. Water Resour. Res., 49, 767789, doi:10.1002/wrcr.20063.

    • Search Google Scholar
    • Export Citation
  • Moazami, S., Golian S. , Kavianpour M. R. , and Hong Y. , 2014: Uncertainty analysis of bias from satellite rainfall estimates using copula method. Atmos. Res., 137, 145166, doi:10.1016/j.atmosres.2013.08.016.

    • Search Google Scholar
    • Export Citation
  • Nazemi, A., and Elshorbagy A. , 2012: Application of copula modelling to the performance assessment of reconstructed watersheds. Stochastic Environ. Res. Risk Assess., 26, 189205, doi:10.1007/s00477-011-0467-7.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., Finlayson B. L. , and McMahon T. A. , 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, doi:10.5194/hess-11-1633-2007.

    • Search Google Scholar
    • Export Citation
  • Ross, T., and Lott N. , 2003: A climatology of 1980–2003 extreme weather and climate events. NCDC Tech. Rep. 2003-01, 14 pp. [Available online at https://www.ncdc.noaa.gov/billions/docs/lott-and-ross-2003.pdf.]

  • Seo, B. C., and Krajewski W. F. , 2010: Scale dependence of radar rainfall uncertainty: Initial evaluation of NEXRAD’s new super-resolution data for hydrologic applications. J. Hydrometeor., 11, 11911198, doi:10.1175/2010JHM1265.1.

    • Search Google Scholar
    • Export Citation
  • Serinaldi, F., 2009a: Copula-based mixed models for bivariate rainfall data: An empirical study in regression perspective. Stochastic Environ. Res. Risk Assess., 23, 677693, doi:10.1007/s00477-008-0249-z.

    • Search Google Scholar
    • Export Citation
  • Serinaldi, F., 2009b: A multisite daily rainfall generator driven by bivariate copula-based mixed distributions. J. Geophys. Res., 114, D10103, doi:10.1029/2008JD011258.

    • Search Google Scholar
    • Export Citation
  • Smith, A. B., and Katz R. W. , 2013: US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387410, doi:10.1007/s11069-013-0566-5.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., and Coauthors, 2011: Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Amer. Meteor. Soc., 92, 13531357, doi:10.1175/2011BAMS3158.1.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., Bell T. L. , Zhang Y. , and Wood E. F. , 2003: Comparison of two methods for estimating the sampling-related uncertainty of satellite rainfall averages based on a large radar dataset. J. Climate, 16, 37593778, doi:10.1175/1520-0442(2003)016<3759:COTMFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Arkin P. , Sapiano M. R. P. , and Ebert E. E. , 2008: Evaluating high-resolution precipitation products. Bull. Amer. Meteor. Soc., 89, 19111916, doi:10.1175/2008BAMS2652.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Krajewski W. , 2010: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129, doi:10.1007/s10712-009-9079-x.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Serinaldi F. , and Krajewski W. F. , 2008: Modeling radar–rainfall estimation uncertainties using parametric and non-parametric approaches. Adv. Water Resour., 31, 16741686, doi:10.1016/j.advwatres.2008.08.002.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Seo B.-C. , Serinaldi F. , and Krajewski W. F. , 2014: Spatial and temporal modeling of radar rainfall uncertainties. Atmos. Res., 135–136, 91101, doi:10.1016/j.atmosres.2013.09.007.

    • Search Google Scholar
    • Export Citation
  • Xie, H., Zhou X. , Hendrickx J. M. H. , Vivoni E. R. , Guan H. , Tian Y. Q. , and Small E. E. , 2006: Evaluation of NEXRAD Stage III precipitation data over a semiarid region. J. Amer. Water Resour. Assoc., 42, 237256, doi:10.1111/j.1752-1688.2006.tb03837.x.

    • Search Google Scholar
    • Export Citation
  • Yan, J., and Gebremichael M. , 2009: Estimating actual rainfall from satellite rainfall products. Atmos. Res., 92, 481488, doi:10.1016/j.atmosres.2009.02.004.

    • Search Google Scholar
    • Export Citation
  • Yuan, H., Mullen S. L. , Gao X. , Sorooshian S. , Du J. , and Juang H. M. H. , 2005: Verification of probabilistic quantitative precipitation forecasts over the southwest United States during winter 2002/03 by the RSM ensemble system. Mon. Wea. Rev., 133, 279294, doi:10.1175/MWR-2858.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 51 5
PDF Downloads 83 32 3