Sensitivity of Precipitation Statistics to Resolution, Microphysics, and Convective Parameterization: A Case Study with the High-Resolution WRF Climate Model over Europe

Alexandre B. Pieri Institute of Atmospheric Sciences and Climate, National Research Council, Turin, Italy

Search for other papers by Alexandre B. Pieri in
Current site
Google Scholar
PubMed
Close
,
Jost von Hardenberg Institute of Atmospheric Sciences and Climate, National Research Council, Turin, Italy

Search for other papers by Jost von Hardenberg in
Current site
Google Scholar
PubMed
Close
,
Antonio Parodi CIMA Foundation, Savona, and Institute of Atmospheric Sciences and Climate, National Research Council, Turin, Italy

Search for other papers by Antonio Parodi in
Current site
Google Scholar
PubMed
Close
, and
Antonello Provenzale Institute of Atmospheric Sciences and Climate, National Research Council, Turin, and Institute of Geosciences and Earth Resources, National Research Council, Pisa, Italy

Search for other papers by Antonello Provenzale in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We explore the impact of different resolutions, convective closures, and microphysical parameterizations on the representation of precipitation statistics (climatology, seasonal cycle, and intense events) in 20-yr-long simulations over Europe with the regional climate Weather Research and Forecasting (WRF) Model. The simulations are forced in the period 1979–98, using as boundary conditions the ERA-Interim fields over the European region. Special attention is paid to the representation of precipitation in the Alpine area. We consider spatial resolutions ranging from 0.11° to 0.037°, allowing for an explicit representation of convection at the highest resolution. Our results show that while there is a good overall agreement between observed and modeled precipitation patterns, the model outputs display a positive precipitation bias, particularly in winter. The choice of the microphysics scheme is shown to significantly affect the statistics of intense events. High resolution and explicitly resolved convection help to considerably reduce precipitation biases in summer and the reproduction of precipitation statistics.

Corresponding author address: Alexandre B. Pieri, Institute of Atmospheric Sciences and Climate, National Research Council, Corso Fiume 4, 10133 Turin, Italy. E-mail: a.pieri@isac.cnr.it

Abstract

We explore the impact of different resolutions, convective closures, and microphysical parameterizations on the representation of precipitation statistics (climatology, seasonal cycle, and intense events) in 20-yr-long simulations over Europe with the regional climate Weather Research and Forecasting (WRF) Model. The simulations are forced in the period 1979–98, using as boundary conditions the ERA-Interim fields over the European region. Special attention is paid to the representation of precipitation in the Alpine area. We consider spatial resolutions ranging from 0.11° to 0.037°, allowing for an explicit representation of convection at the highest resolution. Our results show that while there is a good overall agreement between observed and modeled precipitation patterns, the model outputs display a positive precipitation bias, particularly in winter. The choice of the microphysics scheme is shown to significantly affect the statistics of intense events. High resolution and explicitly resolved convection help to considerably reduce precipitation biases in summer and the reproduction of precipitation statistics.

Corresponding author address: Alexandre B. Pieri, Institute of Atmospheric Sciences and Climate, National Research Council, Corso Fiume 4, 10133 Turin, Italy. E-mail: a.pieri@isac.cnr.it
Save
  • Auer, I., and Coauthors, 2007: HISTALP—historical instrumental climatological surface time series of the greater alpine region. Int. J. Climatol., 27, 1746, doi:10.1002/joc.1377.

    • Search Google Scholar
    • Export Citation
  • Becker, A., Finger P. , Meyer-Christoffer A. , Rudolf B. , Schamm K. , Schneider U. , and Ziese M. , 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, doi:10.5194/essd-5-71-2013.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, doi:10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., and Karoly D. J. , 2009: Precipitation simulations using WRF as a nested regional climate model. J. Appl. Meteor. Climatol., 48, 21522159, doi:10.1175/2009JAMC2186.1.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., Pielke R. A. , and Leoncini G. , 2005: Dynamical downscaling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J. Geophys. Res.,110, D05108, doi:10.1029/2004JD004721.

  • Chan, S., Kendon E. , Fowler H. , Blenkinsop S. , Roberts N. , and Ferro C. , 2014: The value of high-resolution met office regional climate models in the simulation of multihourly precipitation extremes. J. Climate,27, 6155–6174, doi:10.1175/JCLI-D-13-00723.1.

  • Christensen, J., and Christensen O. , 2003: Climate modelling: Severe summertime flooding in Europe. Nature, 421, 805806, doi:10.1038/421805a.

    • Search Google Scholar
    • Export Citation
  • Chu, J., Warrach-Sagi K. , Wulfmeyer V. , Schwitalla T. , and Bauer H. , 2010: Regional climate simulation (1989–2009) with WRF in the CORDEX-Europe domain. EMS Annual Meeting Abstracts, Vol. 7, Abstract EMS2010-209. [Available online at http://meetingorganizer.copernicus.org/EMS2010/EMS2010-209-1.pdf.]

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Denis, B., Laprise R. , Caya D. , and Côté J. , 2002: Downscaling ability of one-way nested regional climate models: The big-brother experiment. Climate Dyn., 18, 627646, doi:10.1007/s00382-001-0201-0.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., Drobinski P. , Vrac M. , Bastin S. , Lebeaupin-Brossier C. , Stéfanon M. , Borga M. , and Calvet J.-C. , 2013: Precipitation and temperature space–time variability and extremes in the Mediterranean region: Evaluation of dynamical and statistical downscaling methods. Climate Dyn.,40, 2687–2705, doi:10.1007/s00382-012-1558-y.

  • Fowler, H. J., and Wilby R. L. , 2010: Detecting changes in seasonal precipitation extremes using regional climate model projections: Implications for managing fluvial flood risk. Water Resour. Res.,46, W03525, doi:10.1029/2008WR007636.

  • Frei, C., Schöll R. , Fukutome S. , Schmidli J. , and Vidale P. , 2006: Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res., 111, D06105, doi:10.1029/2005JD005965.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., 1999: Eta simulations of three extreme precipitation events: Sensitivity to resolution and convective parameterization. Wea. Forecasting,14, 405–426, doi:10.1175/1520-0434(1999)014<0405:ESOTEP>2.0.CO;2.

  • Gerard, L., 2007: An integrated package for subgrid convection, clouds and precipitation compatible with meso-gamma scales. Quart. J. Roy. Meteor. Soc., 133, 711730, doi:10.1002/qj.58.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 3, 941963, doi:10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett.,33, L08707, doi:10.1029/2006GL025734.

  • Giorgi, F., and Mearns L. O. , 1991: Approaches to the simulation of regional climate change: A review. Rev. Geophys., 29, 191216, doi:10.1029/90RG02636.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Marinucci M. R. , and Visconti G. , 1990: Use of a limited-area model nested in a general circulation model for regional climate simulation over Europe. J. Geophys. Res., 95, 18 41318 431, doi:10.1029/JD095iD11p18413.

    • Search Google Scholar
    • Export Citation
  • Gobiet, A., and Coauthors, 2012: A new generation of regional climate simulations for Europe: The EURO-CORDEX initiative. EGU General Assembly Conf., Vienna, Austria, EGU, 8211.

  • Haylock, M. R., Hofstra N. , Klein Tank A. M. G. , Klok E. J. , Jones P. D. , and New M. , 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and Lim J.-O. J. , 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc, 42 (2), 129151.

    • Search Google Scholar
    • Export Citation
  • Isotta, F. A., and Coauthors, 2013: The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol., 34, 1657–1675, doi:10.1002/joc.3794.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2013: Euro-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, doi:10.1007/s10113-013-0499-2.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., Gallus W. A. , Segal M. , Shaw B. , and Koch S. E. , 2005: The impact of different WRF Model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting,20, 1048–1060, doi:10.1175/WAF888.1.

  • Jones, R. G., Murphy J. M. , and Noguer M. , 1995: Simulation of climate change over Europe using a nested regional-climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. Quart. J. Roy. Meteor. Soc., 121, 14131449, doi:10.1002/qj.49712152610.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Weiss S. J. , Levit J. J. , Baldwin M. E. , and Bright D. R. , 2006: Examination of convection-allowing configurations of the WRF Model for the prediction of severe convective weather: The SPC/NSSL spring program 2004. Wea. Forecasting, 21, 167181, doi:10.1175/WAF906.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and DeHaan L. , 2011: The Added Value Index: A new metric to quantify the added value of regional models. J. Geophys. Res.,116, D11106, doi:10.1029/2011JD015597.

  • Kotlarski, S., and Coauthors, 2014: Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. Discuss., 7, 217293, doi:10.5194/gmdd-7-217-2014.

    • Search Google Scholar
    • Export Citation
  • Lo, J. C.-F., Yang Z.-L. , and Pielke R. A. , 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) Model. J. Geophys. Res., 113, D09112, doi:10.1029/2007JD009216.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., 1997: Regional climate modelling. Meteor. Atmos. Phys., 63, 105117, doi:10.1007/BF01025367.

  • Miglietta, M., and Rotunno R. , 2012: Application of theory to simulations of observed cases of orographically forced convective rainfall. Mon. Wea. Rev., 140, 30393053, doi:10.1175/MWR-D-11-00253.1.

    • Search Google Scholar
    • Export Citation
  • Miller, L., 1975: Internal airflow of a convective storm from dual-Doppler radar measurements. Pure Appl. Geophys., 113, 765785, doi:10.1007/BF01592958.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and Jones P. D. , 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., Mulligan F. J. , and Fealy R. , 2013: Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of Europe over the period 1990–95. J. Climate, 26, 10021017, doi:10.1175/JCLI-D-11-00676.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Gettelman A. , 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, J., 2000: Predictions of climate change over Europe using statistical and dynamical downscaling techniques. Int. J. Climatol., 20, 489501, doi:10.1002/(SICI)1097-0088(200004)20:5<489::AID-JOC484>3.0.CO;2-6.

    • Search Google Scholar
    • Export Citation
  • New, M., Hulme M. , and Jones P. , 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, doi:10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • New, M., Hulme M. , and Jones P. , 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Huang H.-L. , and Seifert A. , 2006: A comparison of microphysical schemes in the WRF Model during a severe weather event. Preprints, 7th Annual WRF User’s Workshop, Boulder, CO, UCAR, 5 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/PSession05/P5_7_Otkin.pdf.]

  • Palazzi, E., von Hardenberg J. , and Provenzale A. , 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos.,118, 85–100, doi:10.1029/2012JD018697.

  • Prein, A. F., Holland G. J. , Rasmussen R. M. , Done J. , Ikeda K. , Clark M. P. , and Liu C. H. , 2013: Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J. Climate, 26, 48484857, doi:10.1175/JCLI-D-12-00727.1.

    • Search Google Scholar
    • Export Citation
  • Rajczak, J., Pall P. , and Schär C. , 2013: Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine region. J. Geophys. Res. Atmos., 118, 36103626, doi:10.1002/jgrd.50297.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Search Google Scholar
    • Export Citation
  • Ray, P., Doviak R. , Walker G. , Sirmans D. , Carter J. , and Bumgarner B. , 1975: Dual-Doppler observation of a tornadic storm. J. Appl. Meteor., 14, 15211530, doi:10.1175/1520-0450(1975)014<1521:DDOOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rebora, N., Ferraris L. , von Hardenberg J. , and Provenzale A. , 2006: Rainfall downscaling and flood forecasting: a case study in the Mediterranean area. Nat. Hazards Earth Syst. Sci., 6, 611619, doi:10.5194/nhess-6-611-2006.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’S Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

  • Rotunno, R., and Houze R. A. , 2007: Lessons on orographic precipitation from the mesoscale Alpine programme. Quart. J. Roy. Meteor. Soc., 133, 811830, doi:10.1002/qj.67.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., doi:10.5065/D6DZ069T.

  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and Chomé F. , 2005: One-way nested regional climate simulations and domain size. J. Climate, 18, 229233, doi:10.1175/JCLI3252.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., 2011: An assessment of the surface climate in the NCEP climate forecast system reanalysis. Climate Dyn., 37, 16011620, doi:10.1007/s00382-010-0935-7.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and Seaman N. L. , 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125, 252278, doi:10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Warrach-Sagi, K., Schwitalla T. , Wulfmeyer V. , and Bauer H.-S. , 2013: Evaluation of a climate simulation in Europe based on the WRF–Noah Model system: Precipitation in Germany. Climate Dyn., 41, 755774, doi:10.1007/s00382-013-1727-7.

    • Search Google Scholar
    • Export Citation
  • Wilson, C. A., and Mitchell J. F. B. , 1987: Simulated climate and CO2-induced climate change over Western Europe. Climatic Change, 10, 1142, doi:10.1007/BF00140555.

    • Search Google Scholar
    • Export Citation
  • Yu, X., and Lee T.-Y. , 2010: Role of convective parameterization in simulations of a convection band at grey-zone resolutions. Tellus, 62A, 617632, doi:10.1111/j.1600-0870.2010.00470.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1281 419 34
PDF Downloads 836 209 17