A Nonlinear Approach to Regional Flood Frequency Analysis Using Projection Pursuit Regression

Martin Durocher Eau Terre Environnement, Institut National de Recherche Scientifique, University of Québec, Québec, Canada

Search for other papers by Martin Durocher in
Current site
Google Scholar
PubMed
Close
,
Fateh Chebana Eau Terre Environnement, Institut National de Recherche Scientifique, University of Québec, Québec, Canada

Search for other papers by Fateh Chebana in
Current site
Google Scholar
PubMed
Close
, and
Taha B. M. J. Ouarda Institute Center for Water Advanced Technology and Environmental Research (iWater), Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates

Search for other papers by Taha B. M. J. Ouarda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents an approach for regional flood frequency analysis (RFFA) in the presence of nonlinearity and problematic stations, which require adapted methodologies. To this end, the projection pursuit regression (PPR) is proposed. The PPR is a family of regression models that applies smooth functions on intermediate predictors to fit complex patterns. The PPR approach can be seen as a hybrid method between the generalized additive model (GAM) and the artificial neural network (ANN), which combines the advantages of both methods. Indeed, the PPR approach has the structure of a GAM to describe nonlinear relations between hydrological variables and other basin characteristics. On the other hand, PPR can consider interactions between basin characteristics to improve the predictive capabilities in a similar way to ANN, but simpler. The methodology developed in the present study is applied to a case study represented by hydrometric stations from southern Québec, Canada. It is shown that flood quantiles are mostly associated with a dominant intermediate predictor, which provides a parsimonious representation of the nonlinearity in the flood-generating processes. The model performance is compared to eight other methods available in the literature for the same dataset, including GAM and ANN. When using the same basin characteristics, the results indicate that the simpler structure of PPR does not affect the global performance and that PPR is competitive with the best existing methods in RFFA. Particular attention is also given to the performance resulting from the choice of the basin characteristics and the presence of problematic stations.

Corresponding author address: Martin Durocher, INRS-ETE, University of Québec, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada. E-mail: martin.durocher@ete.inrs.ca

Abstract

This paper presents an approach for regional flood frequency analysis (RFFA) in the presence of nonlinearity and problematic stations, which require adapted methodologies. To this end, the projection pursuit regression (PPR) is proposed. The PPR is a family of regression models that applies smooth functions on intermediate predictors to fit complex patterns. The PPR approach can be seen as a hybrid method between the generalized additive model (GAM) and the artificial neural network (ANN), which combines the advantages of both methods. Indeed, the PPR approach has the structure of a GAM to describe nonlinear relations between hydrological variables and other basin characteristics. On the other hand, PPR can consider interactions between basin characteristics to improve the predictive capabilities in a similar way to ANN, but simpler. The methodology developed in the present study is applied to a case study represented by hydrometric stations from southern Québec, Canada. It is shown that flood quantiles are mostly associated with a dominant intermediate predictor, which provides a parsimonious representation of the nonlinearity in the flood-generating processes. The model performance is compared to eight other methods available in the literature for the same dataset, including GAM and ANN. When using the same basin characteristics, the results indicate that the simpler structure of PPR does not affect the global performance and that PPR is competitive with the best existing methods in RFFA. Particular attention is also given to the performance resulting from the choice of the basin characteristics and the presence of problematic stations.

Corresponding author address: Martin Durocher, INRS-ETE, University of Québec, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada. E-mail: martin.durocher@ete.inrs.ca
Save
  • Archfield, S., Pugliese A. , Castellarin A. , Skøien J. , and Kiang J. , 2013: Topological and canonical kriging for design flood prediction in ungauged catchments: An improvement over a traditional regional regression approach? Hydrol. Earth Syst. Sci., 17, 1575–1588, doi:10.5194/hess-17-1575-2013.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. M., 1995: Neural Networks for Pattern Recognition. Oxford University Press, 504 pp.

  • Burn, D. H., 1990: An appraisal of the “region of influence” approach to flood frequency analysis. Hydrol. Sci. J., 35, 149166, doi:10.1080/02626669009492415.

    • Search Google Scholar
    • Export Citation
  • Castiglioni, S., Castellarin A. , and Montanari A. , 2009: Prediction of low-flow indices in ungauged basins through physiographical space-based interpolation. J. Hydrol., 378, 272280, doi:10.1016/j.jhydrol.2009.09.032.

    • Search Google Scholar
    • Export Citation
  • Chebana, F., and Ouarda T. B. M. J. , 2008: Depth and homogeneity in regional flood frequency analysis. Water Resour. Res., 44, W11422, doi:10.1029/2007WR006771.

    • Search Google Scholar
    • Export Citation
  • Chebana, F., and Ouarda T. B. M. J. , 2009: Index flood–based multivariate regional frequency analysis. Water Resour. Res., 45, W10435, doi:10.1029/2008WR007490.

    • Search Google Scholar
    • Export Citation
  • Chebana, F., Charron C. , Ouarda T. B. M. J. , and Martel B. , 2014: Regional frequency analysis at ungauged sites with the generalized additive model. J. Hydrometeor., 15, 2418–2428, doi:10.1175/JHM-D-14-0060.1.

    • Search Google Scholar
    • Export Citation
  • Chokmani, K., and Ouarda T. B. M. J. , 2004: Physiographical space-based kriging for regional flood frequency estimation at ungauged sites. Water Resour. Res., 40, W12514, doi:10.1029/2003WR002983.

    • Search Google Scholar
    • Export Citation
  • Dawson, C. W., Abrahart R. J. , Shamseldin A. Y. , and Wilby R. L. , 2006: Flood estimation at ungauged sites using artificial neural networks. J. Hydrol., 319, 391409, doi:10.1016/j.jhydrol.2005.07.032.

    • Search Google Scholar
    • Export Citation
  • Eaton, B., Church M. , and Ham D. , 2002: Scaling and regionalization of flood flows in British Columbia, Canada. Hydrol. Processes, 16, 32453263, doi:10.1002/hyp.1100.

    • Search Google Scholar
    • Export Citation
  • Eng, K., Milly P. , and Tasker G. , 2007: Flood regionalization: q hybrid geographic and predictor-variable region-of-influence regression method. J. Hydrol. Eng., 12, 585591, doi:10.1061/(ASCE)1084-0699(2007)12:6(585).

    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., and Stuetzle W. , 1981: Projection pursuit regression. J. Amer. Stat. Assoc., 76, 817823, doi:10.1080/01621459.1981.10477729.

    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., Grosse E. , and Stuetzle W. , 1983: Multidimensional additive spline approximation. SIAM J. Sci. Stat. Comput., 4, 291301, doi:10.1137/0904023.

    • Search Google Scholar
    • Export Citation
  • Griffis, V., and Stedinger J. , 2007: The use of GLS regression in regional hydrologic analyses. J. Hydrol., 344, 8295, doi:10.1016/j.jhydrol.2007.06.023.

    • Search Google Scholar
    • Export Citation
  • Haddad, K., and Rahman A. , 2012: Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework—Quantile regression vs. parameter regression technique. J. Hydrol., 430–431, 142161, doi:10.1016/j.jhydrol.2012.02.012.

    • Search Google Scholar
    • Export Citation
  • Haddad, K., Rahman A. , Zaman M. A. , and Shrestha S. , 2013: Applicability of Monte Carlo cross validation technique for model development and validation using generalised least squares regression. J. Hydrol., 482, 119128, doi:10.1016/j.jhydrol.2012.12.041.

    • Search Google Scholar
    • Export Citation
  • Haddad, K., Rahman A. , and Ling F. , 2015: Regional flood frequency analysis method for Tasmania, Australia: A case study on the comparison of fixed region and region-of-influence approaches. Hydrol. Sci. J., doi:10.1080/02626667.2014.950583, in press.

  • Hastie, T., Tibshirani R. , and Friedman J. H. , 2009: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, Springer, 552 pp.

  • Hosking, J. R. M., and Wallis J. R. , 1997: Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, 244 pp.

  • Hwang, J.-N., Lay S.-R. , Maechler M. , Martin R. D. , and Schimert J. , 1994: Regression modeling in back-propagation and projection pursuit learning. IEEE Trans. Neural Networks, 5, 342353, doi:10.1109/72.286906.

    • Search Google Scholar
    • Export Citation
  • Khalil, B., Ouarda T. B. M. J. , and St-Hilaire A. , 2011: Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J. Hydrol., 405, 277287, doi:10.1016/j.jhydrol.2011.05.024.

    • Search Google Scholar
    • Export Citation
  • Kjeldsen, T. R., and Jones D. A. , 2009: An exploratory analysis of error components in hydrological regression modeling. Water Resour. Res.,45, W02407, doi:10.1029/2007WR006283.

  • Nelder, J. A., and Wedderburn R. W. , 1972: Generalized linear models. J. Roy. Stat. Soc.,A135 (3), 370–384.

  • Nezhad, M. K., Chokmani K. , Ouarda T. B. M. J. , Barbet M. , and Bruneau P. , 2010: Regional flood frequency analysis using residual kriging in physiographical space. Hydrol. Processes, 24, 20452055, doi:10.1002/hyp.763.

    • Search Google Scholar
    • Export Citation
  • Opsomer, J., Wang Y. , and Yang Y. , 2001: Nonparametric regression with correlated errors. Stat. Sci., 16, 134153.

  • Ouarda, T. B. M. J., and Shu C. , 2009: Regional low-flow frequency analysis using single and ensemble artificial neural networks. Water Resour. Res., 45, W11428, doi:10.1029/2008WR007196.

    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., Girard C. , Cavadias G. S. , and Bobée B. , 2001: Regional flood frequency estimation with canonical correlation analysis. J. Hydrol., 254, 157173, doi:10.1016/S0022-1694(01)00488-7.

    • Search Google Scholar
    • Export Citation
  • Ouarda, T. B. M. J., and Coauthors, 2008: Intercomparison of regional flood frequency estimation methods at ungauged sites for a Mexican case study. J. Hydrol., 348, 4058, doi:10.1016/j.jhydrol.2007.09.031.

    • Search Google Scholar
    • Export Citation
  • Pandey, G., and Nguyen V. , 1999: A comparative study of regression based methods in regional flood frequency analysis. J. Hydrol., 225, 92101, doi:10.1016/S0022-1694(99)00135-3.

    • Search Google Scholar
    • Export Citation
  • Reis, D., Stedinger J. , and Martins E. , 2005: Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resour. Res., 41, W10419, doi:10.1029/2004WR003445.

    • Search Google Scholar
    • Export Citation
  • Ribeiro, J., and Rousselle J. , 1996: Robust simple scaling analysis of flood peaks series. Can. J. Civ. Eng., 23, 11391145, doi:10.1139/l96-923.

    • Search Google Scholar
    • Export Citation
  • Roosen, C. B., and Hastie T. J. , 1994: Automatic smoothing spline projection pursuit. J. Comput. Graph. Stat., 3, 235248, doi:10.1080/10618600.1994.10474642.

    • Search Google Scholar
    • Export Citation
  • Sadri, S., and Burn D. H. , 2011: A fuzzy C-means approach for regionalization using a bivariate homogeneity and discordancy approach. J. Hydrol., 401, 231239, doi:10.1016/j.jhydrol.2011.02.027.

    • Search Google Scholar
    • Export Citation
  • Schaefli, B., and Gupta H. V. , 2007: Do Nash values have value? Hydrol. Processes, 21, 20752080, doi:10.1002/hyp.6825.

  • Shu, C., and Burn D. H. , 2004: Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour. Res., 40, W09301, doi:10.1029/2003WR002816.

    • Search Google Scholar
    • Export Citation
  • Shu, C., and Ouarda T. B. M. J. , 2007: Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resour. Res., 43, W07438, doi:10.1029/2006WR005142.

    • Search Google Scholar
    • Export Citation
  • Stedinger, J., and Tasker G. , 1985: Regional hydrologic analysis: 1. Ordinary, weighted, and generalized least squares compared. Water Resour. Res., 21, 14211432, doi:10.1029/WR021i009p01421.

    • Search Google Scholar
    • Export Citation
  • Tasker, G., and Stedinger J. , 1989: An operational GLS model for hydrologic regression. J. Hydrol., 111, 361375, doi:10.1016/0022-1694(89)90268-0.

    • Search Google Scholar
    • Export Citation
  • Tukey, J., 1975: Mathematics and the picturing of data. Proceedings of the International Congress of Mathematicians, Canadian Mathematical Congress, 523531.

  • Wazneh, H., Chebana F. , and Ouarda T. B. M. J. , 2013a: Optimal depth-based regional frequency analysis. Hydrol. Earth Syst. Sci., 17, 22812296, doi:10.5194/hess-17-2281-2013.

    • Search Google Scholar
    • Export Citation
  • Wazneh, H., Chebana F. , and Ouarda T. B. M. J. , 2013b: Depth-based regional index-flood model. Water Resour. Res., 49, 79577972, doi:10.1002/2013WR013523.

    • Search Google Scholar
    • Export Citation
  • Weisberg, S., and Welsh A. , 1994: Adapting for the missing link. Ann. Stat., 22, 16741700, doi:10.1214/aos/1176325749.

  • Wittenberg, H., 1999: Baseflow recession and recharge as nonlinear storage processes. Hydrol. Processes, 13, 715726, doi:10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., and Ruppert D. , 2002: Penalized spline estimation for partially linear single-index models. J. Amer. Stat. Assoc., 97, 10421054, doi:10.1198/016214502388618861.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1683 669 16
PDF Downloads 469 77 3