High-Elevation Precipitation Patterns: Using Snow Measurements to Assess Daily Gridded Datasets across the Sierra Nevada, California*

Jessica D. Lundquist +Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Jessica D. Lundquist in
Current site
Google Scholar
PubMed
Close
,
Mimi R. Abel #Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, Colorado
@NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Mimi R. Abel in
Current site
Google Scholar
PubMed
Close
,
Brian Henn +Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Brian Henn in
Current site
Google Scholar
PubMed
Close
,
Ethan D. Gutmann &National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Ethan D. Gutmann in
Current site
Google Scholar
PubMed
Close
,
Ben Livneh #Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, Colorado
@NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Ben Livneh in
Current site
Google Scholar
PubMed
Close
,
Jeff Dozier ** Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Jeff Dozier in
Current site
Google Scholar
PubMed
Close
, and
Paul Neiman #Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Paul Neiman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Gridded spatiotemporal maps of precipitation are essential for hydrometeorological and ecological analyses. In the United States, most of these datasets are developed using the Cooperative Observer (COOP) network of ground-based precipitation measurements, interpolation, and the Parameter–Elevation Regressions on Independent Slopes Model (PRISM) to map these measurements to places where data are not available. Here, we evaluate two daily datasets gridded at ° resolution against independent daily observations from over 100 snow pillows in California’s Sierra Nevada from 1990 to 2010. Over the entire period, the gridded datasets performed reasonably well, with median total water-year errors generally falling within ±10%. However, errors in individual storm events sometimes exceeded 50% for the median difference across all stations, and in many cases, the same underpredicted storms appear in both datasets. Synoptic analysis reveals that these underpredicted storms coincide with 700-hPa winds from the west or northwest, which are associated with post-cold-frontal flow and disproportionately small precipitation rates in low-elevation valley locations, where the COOP stations are primarily located. This atmospheric circulation leads to a stronger than normal valley-to-mountain precipitation gradient and underestimation of actual mountain precipitation. Because of the small average number of storms (<10) reaching California each year, these individual storm misses can lead to large biases (~20%) in total water-year precipitation and thereby significantly affect estimates of statewide water resources.

Joint Institute for the Study of the Atmosphere and Ocean Contribution Number 2405.

Corresponding author address: Jessica D. Lundquist, Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195. E-mail: jdlund@u.washington.edu

Abstract

Gridded spatiotemporal maps of precipitation are essential for hydrometeorological and ecological analyses. In the United States, most of these datasets are developed using the Cooperative Observer (COOP) network of ground-based precipitation measurements, interpolation, and the Parameter–Elevation Regressions on Independent Slopes Model (PRISM) to map these measurements to places where data are not available. Here, we evaluate two daily datasets gridded at ° resolution against independent daily observations from over 100 snow pillows in California’s Sierra Nevada from 1990 to 2010. Over the entire period, the gridded datasets performed reasonably well, with median total water-year errors generally falling within ±10%. However, errors in individual storm events sometimes exceeded 50% for the median difference across all stations, and in many cases, the same underpredicted storms appear in both datasets. Synoptic analysis reveals that these underpredicted storms coincide with 700-hPa winds from the west or northwest, which are associated with post-cold-frontal flow and disproportionately small precipitation rates in low-elevation valley locations, where the COOP stations are primarily located. This atmospheric circulation leads to a stronger than normal valley-to-mountain precipitation gradient and underestimation of actual mountain precipitation. Because of the small average number of storms (<10) reaching California each year, these individual storm misses can lead to large biases (~20%) in total water-year precipitation and thereby significantly affect estimates of statewide water resources.

Joint Institute for the Study of the Atmosphere and Ocean Contribution Number 2405.

Corresponding author address: Jessica D. Lundquist, Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195. E-mail: jdlund@u.washington.edu
Save
  • Baldwin, M. E., and Mitchell K. E. , 1996: The NCEP hourly multi-sensor U.S. precipitation analysis. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., J95J96.

  • Beaumont, R. T., 1965: Mt. Hood pressure pillow snow gage. J. Appl. Meteor., 4, 626631, doi:10.1175/1520-0450(1965)004<0626:MHPPSG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • California Data Exchange Center, 2014a: California Data Exchange Center—Precipitation. Accessed 10 May 2014. [Available online at http://cdec.water.ca.gov/snow_rain.html.]

  • California Data Exchange Center, 2014b: California Data Exchange Center—Snow. Accessed 10 May 2014. [Available online at http://cdec.water.ca.gov/snow/current/snow/index.html.]

  • Climate Impacts Group, 2014: Western US Hydroclimate Scenarios Project. Accessed 22 May 2014. [Available online at http://cses.washington.edu/cig/data/wus.shtml.]

  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Daly, C., 2013: Descriptions of PRISM spatial climate datasets for the conterminous United States. PRISM Doc., 14 pp. [Available online at http://www.prism.oregonstate.edu/documents/PRISM_datasets_aug2013.pdf.]

  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Gibson W. P. , Taylor G. H. , Doggett M. K. , and Smith J. I. , 2007: Observer bias in daily precipitation measurements at United States cooperative network stations. Bull. Amer. Meteor. Soc., 88, 899912, doi:10.1175/BAMS-88-6-899.

    • Search Google Scholar
    • Export Citation
  • Daly, C., and Coauthors, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M., Redmond K. , and Cayan D. , 2004: Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeor., 5, 11021116, doi:10.1175/JHM-390.1.

    • Search Google Scholar
    • Export Citation
  • Farnes, P. E., 1967: Criteria for determining mountain snow pillow sites. Proc. 35th Annual Western Snow Conf., Boise, Idaho, Western Snow Conference, 59–62. [Available online at http://www.westernsnowconference.org/node/1280.]

  • Gervais, M., Tremblay L. B. , Gyakum J. R. , and Atallah E. , 2014: Representing extremes in a daily gridded precipitation analysis over the United States: Impacts of station density, resolution, and gridding methods. J. Climate, 27, 52015218, doi:10.1175/JCLI-D-13-00319.1.

    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., Louie P. Y. T. , and Yang D. , 1998: WMO solid precipitation measurement intercomparison, final report. WMO/TD-872, 212 pp.

  • Guan, B., Molotch N. P. , Waliser D. E. , Fetzer E. J. , and Neiman P. J. , 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.

    • Search Google Scholar
    • Export Citation
  • Guan, B., Molotch N. P. , Waliser D. E. , Fetzer E. J. , and Neiman P. J. , 2013: The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res., 49, 67316743, doi:10.1002/wrcr.20537.

    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., Rasmussen R. M. , Liu C. , Ikeda K. , Gochis D. J. , Clark M. P. , Dudhia J. , and Thompson G. , 2012: A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. J. Climate, 25, 262281, doi:10.1175/2011JCLI4109.1.

    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., Pruitt T. , Clark M. P. , Brekke L. , Arnold J. R. , Raff D. A. , and Rasmussen R. M. , 2014: An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resour. Res., 50, 7167–7186, doi:10.1002/2014WR015559.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and Lettenmaier D. P. , 2005: Production of temporally consistent gridded precipitation and temperature fields for the continental United States. J. Hydrometeor., 6, 330336, doi:10.1175/JHM420.1.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and Coauthors, 2010: Final report for the Columbia Basin Climate Change Scenarios Project. Pacific Northwest (PNW) Hydroclimate Scenarios Project 2860, Climate Impacts Group, University of Washington. [Available online at http://warm.atmos.washington.edu/2860/.]

  • Higgins, R. W., Shi W. , Yarosh E. , and Joyce R. , 2000: Improved United States Precipitation Quality Control System and Analysis. NCEP/Climate Prediction Center Atlas 7, 40 pp.

  • Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Johnson, J. B., and Marks D. , 2004: The detection and correction of snow water equivalent pressure sensor errors. Hydrol. Processes, 18, 35133525, doi:10.1002/hyp.5795.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., Williams C. N. Jr., Quinlan F. T. , and Boden T. A. , 1990: United States Historical Climatology Network (HCN) Serial Temperature and Precipitation Data. Publ. 3404, Environmental Science Division, Oak Ridge National Laboratory, 389 pp.

  • Kingsmill, D. E., Neiman P. J. , Ralph F. M. , and White A. B. , 2006: Synoptic and topographic variability of Northern California precipitation characteristics in landfalling winter storms observed during CALJET. Mon. Wea. Rev., 134, 20722094, doi:10.1175/MWR3166.1.

    • Search Google Scholar
    • Export Citation
  • Kirchner, J. W., 2006: Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res., 42, W03S04, doi:10.1029/2005WR004362.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/refs/stage2-4.19hydro.pdf.]

  • Livneh, B., and Coauthors, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Neiman P. J. , Martner B. , White A. B. , Gottas D. J. , and Ralph F. M. , 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, doi:10.1175/2007JHM853.1.

    • Search Google Scholar
    • Export Citation
  • Marks, D., Winstral A. , Reba M. , Pomeroy J. , and Kumar M. , 2013: An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Adv. Water Resour., 55, 98110, doi:10.1016/j.advwatres.2012.11.012.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based data set of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., Williams C. N. , and Vose R. S. , 2009: The U.S. Historical Climatology Network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 9931007, doi:10.1175/2008BAMS2613.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., Mote P. W. , and Lundquist J. D. , 2010: Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains. J. Geophys. Res., 115, D14122, doi:10.1029/2009JD013493.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. D. , and Dettinger M. D. , 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Sukovich E. M. , Ralph F. M. , and Abel M. R. , 2010: A seven-year wind profiler-based climatology of the windward barrier jet along California’s northern Sierra Nevada. Mon. Wea. Rev., 138, 12061233, doi:10.1175/2009MWR3170.1.

    • Search Google Scholar
    • Export Citation
  • O’Hara, B. F., Kaplan M. L. , and Underwood S. J. , 2009: Synoptic climatological analyses of extreme snowfalls in the Sierra Nevada. Wea. Forecasting, 24, 16101624, doi:10.1175/2009WAF2222249.1.

    • Search Google Scholar
    • Export Citation
  • Pan, M., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108, 8850, doi:10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Pandey, G. R., Cayan D. R. , and Georgakakos K. P. , 1999: Precipitation structure in the Sierra Nevada of California during winter. J. Geophys. Res., 104, 12 01912 030, doi:10.1029/1999JD900103.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Dettinger M. D. , 2011: Storms, floods, and the science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 92, 265266, doi:10.1029/2011EO320001.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Rheinheimer, D. R., Ligare S. T. , and Viers J. H. , 2012: Water-energy sector vulnerability to climate warming in the Sierra Nevada: Simulating the regulated rivers of California’s West Slope Sierra Nevada. California Energy Commission Publ. CEC-500-2012-016, 71 pp.

  • Rittger, K., 2012: Spatial estimates of snow water equivalent in the Sierra Nevada. Ph.D. thesis, Environmental Science and Management, University of California, Santa Barbara, 225 pp.

  • Rutz, J. J., Steenburgh W. J. , and Ralph F. M. , 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., Hamlet A. F. , Mass C. F. , Lee S.-Y. , Stumbaugh M. , and Steed R. , 2014: Estimates of twenty-first-century flood risk in the Pacific Northwest based on regional climate model simulations. J. Hydrometeor., 15, 18811899, doi:10.1175/JHM-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Schaake, J., Henkel A. , and Cong S. , 2004: Application of PRISM climatologies for hydrologic modeling and forecasting in the western U.S. 18th Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., 5.3. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_72159.htm.]

  • Serreze, M. C., Clark M. P. , and Frei A. , 2001: Characteristics of large snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data. Water Resour. Res., 37, 675688, doi:10.1029/2000WR900307.

    • Search Google Scholar
    • Export Citation
  • Thériault, J., Rasmussen R. , Ikeda K. , and Landolt S. , 2012: Dependence of snow gauge collection efficiency on snowflake characteristics. J. Appl. Meteor. Climatol, 51, 745762, doi:10.1175/JAMC-D-11-0116.1.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., Running S. W. , and White M. A. , 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190, 214251, doi:10.1016/S0022-1694(96)03128-9.

    • Search Google Scholar
    • Export Citation
  • U.S. Army Corps of Engineers, 1956: Snow Hydrology: Summary Report of the Snow Investigations. North Pacific Division, Corps of Engineers, 462 pp.

  • U.S. Census Bureau, 2014: State and county quick facts. Accessed 12 August 2014. [Available online at http://quickfacts.census.gov/qfd/states/06000.html.]

  • Waichler, S. R., and Wigmosta M. S. , 2003: Development of hourly meteorological values from daily data and significance to hydrological modeling at H. J. Andrews Experimental Forest. J. Hydrometeor., 4, 251263, doi:10.1175/1525-7541(2003)4<251:DOHMVF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, doi:10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Yang, D., Kane D. , Zhang Z. , Legates D. , and Goodison B. , 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32, L19501, doi:10.1029/2005GL024057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1561 507 52
PDF Downloads 983 231 29