The Heated Condensation Framework. Part I: Description and Southern Great Plains Case Study

Ahmed B. Tawfik Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia

Search for other papers by Ahmed B. Tawfik in
Current site
Google Scholar
PubMed
Close
,
Paul A. Dirmeyer Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia

Search for other papers by Paul A. Dirmeyer in
Current site
Google Scholar
PubMed
Close
, and
Joseph A. Santanello Jr. Hydrological Sciences, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Joseph A. Santanello Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study extends the heated condensation framework (HCF) presented in Tawfik and Dirmeyer to include variables for describing the convective background state of the atmosphere used to quantify the contribution of the atmosphere to convective initiation within the context of land–atmosphere coupling. In particular, the ability for the full suite of HCF variables to 1) quantify the amount of latent and sensible heat energy necessary for convective initiation, 2) identify the transition from moistening advantage to boundary layer growth advantage, 3) identify locally originating convection, and 4) compare models and observations, directly highlighting biases in the convective state, is demonstrated. These capabilities are illustrated for a clear-sky and convectively active day over the Atmospheric Radiation Measurement Program Southern Great Plains central station using observations, the Rapid Update Cycle (RUC) operational model, and the North American Regional Reanalysis (NARR). The clear-sky day had a higher and unattainable convective threshold, making convective initiation unlikely. The convectively active day had a lower threshold that was attained by midafternoon, reflecting local convective triggering. Compared to observations, RUC tended to have the most difficulty representing the convective state and captured the threshold for the clear-sky case only because of compensating biases in the moisture and temperature profiles. Despite capturing the observed moisture profile very well, a stronger surface inversion in NARR returned overestimates in the convective threshold. The companion paper applies the HCF variables introduced here across the continental United States to examine the climatological behavior of convective initiation and local land–atmosphere coupling.

Current affiliation: Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Ahmed Tawfik, Climate and Global Dynamics, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. E-mail: abtawfik@ucar.edu

Abstract

This study extends the heated condensation framework (HCF) presented in Tawfik and Dirmeyer to include variables for describing the convective background state of the atmosphere used to quantify the contribution of the atmosphere to convective initiation within the context of land–atmosphere coupling. In particular, the ability for the full suite of HCF variables to 1) quantify the amount of latent and sensible heat energy necessary for convective initiation, 2) identify the transition from moistening advantage to boundary layer growth advantage, 3) identify locally originating convection, and 4) compare models and observations, directly highlighting biases in the convective state, is demonstrated. These capabilities are illustrated for a clear-sky and convectively active day over the Atmospheric Radiation Measurement Program Southern Great Plains central station using observations, the Rapid Update Cycle (RUC) operational model, and the North American Regional Reanalysis (NARR). The clear-sky day had a higher and unattainable convective threshold, making convective initiation unlikely. The convectively active day had a lower threshold that was attained by midafternoon, reflecting local convective triggering. Compared to observations, RUC tended to have the most difficulty representing the convective state and captured the threshold for the clear-sky case only because of compensating biases in the moisture and temperature profiles. Despite capturing the observed moisture profile very well, a stronger surface inversion in NARR returned overestimates in the convective threshold. The companion paper applies the HCF variables introduced here across the continental United States to examine the climatological behavior of convective initiation and local land–atmosphere coupling.

Current affiliation: Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Ahmed Tawfik, Climate and Global Dynamics, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. E-mail: abtawfik@ucar.edu
Save
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495–518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, A., Findell K. , Lintner B. R. , Gentine P. , and Kerr C. , 2013: Precipitation sensitivity to surface heat fluxes over North America in reanalysis and model data. J. Hydrometeor., 14, 722743, doi:10.1175/JHM-D-12-0111.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1984: Boundary layer thermodynamics of a high plains severe storm. Mon. Wea. Rev., 112, 21992211, doi:10.1175/1520-0493(1984)112<2199:BLTOAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1992: FIFE atmospheric boundary-layer budget methods. J. Geophys. Res., 97, 18 52318 531, doi:10.1029/91JD03172.

  • Betts, A. K., 2009: Land–surface–atmosphere coupling in observations and models. J. Adv. Model. Earth Syst., 1, doi:10.3894/JAMES.2009.1.4.

  • Betts, A. K., Desjardins R. , Worth D. , and Beckage B. , 2014: Climate coupling between temperature, humidity, precipitation, and cloud cover over the Canadian Prairies. J. Geophys. Res. Atmos., 119, 13 305–13 326, doi:10.1002/2014JD022511.

  • Bogenschutz, P. A., Gettelman A. , Morrison H. , Larson V. E. , Schanen D. P. , Meyer N. R. , and Craig C. , 2012: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: Single-column experiments. Geosci. Model Dev., 5, 14071423, doi:10.5194/gmd-5-1407-2012.

    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., Schneider E. K. , Marx L. , Halder S. , Singh B. , Tawfik A. B. , Dirmeyer P. A. , and Kinter J. L. III, 2015: Improvements in the representation of the Indian summer monsoon in the NCEP climate forecast system version 2. Climate Dyn., doi:10.1007/s00382-015-2484-6, in press.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J. P., Guichard F. , Redelsperger J. L. , and Lafore J. P. , 2004: The role of stability and moisture in the diurnal cycle of convection overland. Quart. J. Roy. Meteor. Soc., 130, 31053117, doi:10.1256/qj.03.132.

    • Search Google Scholar
    • Export Citation
  • Collier, J. C., and Bowman K. P. , 2004: Diurnal cycle of tropical precipitation in a general circulation model. J. Geophys. Res., 109, D17105, doi:10.1029/2004JD004818.

    • Search Google Scholar
    • Export Citation
  • Couvreux, F., Rio C. , Guichard F. , Lothon M. , Canut G. , Bouniol D. , and Gounou A. , 2012: Initiation of daytime local convection in a semi-arid region analysed with high-resolution simulations and AMMA observations. Quart. J. Roy. Meteor. Soc., 138, 5671, doi:10.1002/qj.903.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dai, A., and Trenberth K. E. , 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, doi:10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Giorgi F. , and Trenberth K. E. , 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, doi:10.1029/98JD02720.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., Gentine P. , Betts A. K. , and Lintner B. R. , 2014: Triggering deep convection with a probabilistic plume model. J. Atmos. Sci., 71, 3881–3901, doi:10.1175/JAS-D-13-0340.1.

  • DeAngelis, A. M., Broccoli A. J. , and Decker S. G. , 2013: A Comparison of CMIP3 simulations of precipitation over North America with observations: Daily statistics and circulation features accompanying extreme events. J. Climate, 26, 32093230, doi:10.1175/JCLI-D-12-00374.1.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., Beau I. , Bechtold P. , Grandpeix J. Y. , Piriou J. M. , Redelsperger J. L. , and Soares P. M. M. , 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, doi:10.1002/qj.1959.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2006: The hydrologic feedback pathway for land–climate coupling. J. Hydrometeor., 7, 857867, doi:10.1175/JHM526.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Koster R. D. , and Guo Z. , 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, doi:10.1175/JHM532.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Wang Z. , Mbuh M. J. , and Norton H. E. , 2014: Intensified land surface control on boundary layer growth in a changing climate. Geophys. Res. Lett., 41, 1290–1294, doi:10.1002/2013GL058826.

  • Durre, I., Vose R. S. , and Wuertz D. B. , 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 5368, doi:10.1175/JCLI3594.1.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and Holtslag A. A. M. , 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, doi:10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and Shukla J. , 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12, 31673180, doi:10.1175/1520-0442(1999)012<3167:IOISWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and Wood E. F. , 2011: Observed land–atmosphere coupling from satellite remote sensing and reanalysis. J. Hydrometeor., 12, 12211254, doi:10.1175/2011JHM1380.1.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., Wood E. F. , and Vinukollu R. K. , 2012: A global intercomparison of modeled and observed land–atmosphere coupling. J. Hydrometeor., 13, 749784, doi:10.1175/JHM-D-11-0119.1.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, doi:10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., Gentine P. , Lintner B. R. , and Kerr C. , 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, doi:10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Frye, J. D., and Mote T. L. , 2010: The synergistic relationship between soil moisture and the low-level jet and its role on the prestorm environment in the southern Great Plains. J. Appl. Meteor. Climatol., 49, 775791, doi:10.1175/2009JAMC2146.1.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., Holtslag A. A. M. , D’Andrea F. , and Ek M. , 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 1443–1462, doi:10.1175/JHM-D-12-0137.1.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., Bian X. , and Corsetti L. , 1996: Simulation of the Great Plains low-level jet and associated clouds by general circulation models. Mon. Wea. Rev., 124, 13881408, doi:10.1175/1520-0493(1996)124<1388:SOTGPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., Larson V. E. , and Cotton W. R. , 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, doi:10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, doi:10.1256/qj.03.145.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, doi:10.1175/JHM511.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and Stevens B. , 2013a: Controls on and impacts of the diurnal cycle of deep convective precipitation. J. Adv. Model. Earth Syst., 5, 801815, doi:10.1002/2012MS000216.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and Stevens B. , 2013b: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464, doi:10.1175/JAS-D-12-089.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and Stevens B. , 2013c: Reply to “Comments on ‘Preconditioning deep convection with cumulus congestus.’” J. Atmos. Sci., 70, 41554156, doi:10.1175/JAS-D-13-0216.1.

    • Search Google Scholar
    • Export Citation
  • Juang, J.-Y., Porporato A. , Stoy P. C. , Siqueira M. S. , Oishi A. C. , Detto M. , Kim H.-S. , and Katul G. G. , 2007: Hydrologic and atmospheric controls on initiation of convective precipitation events. Water Resour. Res., 43, W03421, doi:10.1029/2006WR004954.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Schubert S. D. , and Suarez M. J. , 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, doi:10.1175/2008JCLI2718.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and Bretherton C. S. , 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, doi:10.1175/JAS3723.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M. G., and Rasch P. J. , 2005: Tracer transport in deep convective updrafts: Plume ensemble versus bulk formulations. J. Atmos. Sci., 62, 28802894, doi:10.1175/JAS3505.1.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., Choi I. , Tao W.-K. , Schubert S. D. , and Kang I.-S. , 2010: Mechanisms of diurnal precipitation over the US Great Plains: A cloud resolving model perspective. Climate Dyn., 34, 419437, doi:10.1007/s00382-009-0531-x.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, doi:10.1029/2004GL021054.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., Gentine P. , Findell K. L. , D’Andrea F. , Sobel A. H. , and Salvucci G. D. , 2013: An idealized prototype for large-scale land–atmosphere coupling. J. Climate, 26, 23792389, doi:10.1175/JCLI-D-11-00561.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and Xue M. , 2008: Prediction of convective initiation and storm evolution on 12 June 2002 during IHOP_2002. Part I: Control simulation and sensitivity experiments. Mon. Wea. Rev., 136, 22612282, doi:10.1175/2007MWR2161.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., Hannon C. , and Rasmussen E. , 2006: Observations of convection initiation “failure” from the 12 June 2002 IHOP deployment. Mon. Wea. Rev., 134, 375405, doi:10.1175/MWR3059.1.

    • Search Google Scholar
    • Export Citation
  • Matulka, A., López P. , Redondo J. M. , and Tarquis A. , 2014: On the entrainment coefficient in a forced plume: Quantitative effects of source parameters. Nonlinear Processes Geophys., 21, 269278, doi:10.5194/npg-21-269-2014.

    • Search Google Scholar
    • Export Citation
  • Mei, R., and Wang G. , 2012: Summer land–atmosphere coupling strength in the United States: Comparison among observations, reanalysis data, and numerical models. J. Hydrometeor., 13, 10101022, doi:10.1175/JHM-D-11-075.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360, doi:10.1175/BAMS-87-3-343.

  • Morton, B. R., Taylor G. , and Turner J. S. , 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, 234A, 1–23, doi:10.1098/rspa.1956.0011.

  • Rosa, D., and Collins W. D. , 2013: A case study of subdaily simulated and observed continental convective precipitation: CMIP5 and multiscale global climate models comparison. Geophys. Res. Lett., 40, 59996003, doi:10.1002/2013GL057987.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and Nigam S. , 2013: Atmosphere–land surface interactions over the Southern Great Plains: Characterization from pentad analysis of DOE ARM field observations and NARR. J. Climate, 26, 875886, doi:10.1175/JCLI-D-11-00380.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , Kumar S. V. , Alonge C. , and Tao W.-K. , 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599, doi:10.1175/2009JHM1066.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , and Kumar S. V. , 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, doi:10.1175/JHM-D-10-05014.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , Kennedy A. , and Kumar S. V. , 2013: Diagnosing the nature of land–atmosphere coupling: A case study of dry/wet extremes in the U.S. southern Great Plains. J. Hydrometeor., 14, 324, doi:10.1175/JHM-D-12-023.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2006: Soil moisture memory in AGCM simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) data. J. Hydrometeor., 7, 10901112, doi:10.1175/JHM533.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Song, H., Lin W. , Lin Y. , Wolf A. B. , Neggers R. , Donner L. J. , Del Genio A. D. , and Liu Y. , 2013: Evaluation of precipitation simulated by seven SCMs against the ARM observations at the SGP site. J. Climate, 26, 54675492, doi:10.1175/JCLI-D-12-00263.1.

    • Search Google Scholar
    • Export Citation
  • Squires, P., and Turner J. S. , 1962: An entraining jet model for cumulo-nimbus updraughts. Tellus, 14A, 422434, doi:10.1111/j.2153-3490.1962.tb01355.x.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1951: Entrainment of air into a cumulus cloud. J. Meteor., 8, 127129, doi:10.1175/1520-0469(1951)008<0127:EOAIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tawfik, A. B., and Steiner A. L. , 2011: The role of soil ice in land–atmosphere coupling over the United States: A soil moisture–precipitation winter feedback mechanism. J. Geophys. Res., 116, D02113, doi:10.1029/2010JD014333.

    • Search Google Scholar
    • Export Citation
  • Tawfik, A. B., and Dirmeyer P. A. , 2014: A process-based framework for quantifying the atmospheric preconditioning of surface-triggered convection. Geophys. Res. Lett., 41, 173–178, doi:10.1002/2013GL057984.

  • Tawfik, A. B., Dirmeyer P. A. , and Santanello J. A. , 2015: The heated condensation framework. Part II: Climatological behavior of convective initiation and land–atmosphere coupling over the conterminous United States. J. Hydrometeor., 16, 19461961, doi:10.1175/JHM-D-14-0118.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., de Jeu R. A. M. , Guichard F. , Harris P. P. , and Dorigo W. A. , 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, doi:10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Davis C. A. , Ahijevych D. A. , and Manning K. W. , 2013: Use of the parcel buoyancy minimum (Bmin) to diagnose simulated thermodynamic destabilization. Part I: Methodology and case studies of MCS initiation environments. Mon. Wea. Rev., 142, 945–966, doi:10.1175/MWR-D-13-00272.1.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., Vilà-Guerau de Arellano J. , Gounou A. , Guichard F. , and Couvreux F. , 2010: Understanding the daily cycle of evapotranspiration: A method to quantify the influence of forcings and feedbacks. J. Hydrometeor., 11, 14051422, doi:10.1175/2010JHM1272.1.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., 2004: Coupling between large-scale atmospheric processes and mesoscale land–atmosphere interactions in the U.S. Southern Great Plains during summer. Part I: Case studies. J. Hydrometeor., 5, 12231246, doi:10.1175/JHM-396.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253–277, doi:10.1175/BAMS-85-2-253.

  • Weckwerth, T. M., Murphey H. V. , Flamant C. , Goldstein J. , and Pettet C. R. , 2008: An observational study of convection initiation on 12 June 2002 during IHOP_2002. Mon. Wea. Rev., 136, 22832304, doi:10.1175/2007MWR2128.1.

    • Search Google Scholar
    • Export Citation
  • Westra, D., Steeneveld G. J. , and Holtslag A. A. M. , 2012: Some observational evidence for dry soils supporting enhanced relative humidity at the convective boundary layer top. J. Hydrometeor., 13, 13471358, doi:10.1175/JHM-D-11-0136.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and Roberts R. D. , 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, doi:10.1175/MWR3069.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2010: ARM climate modeling best estimate data: A new data product for climate studies. Bull. Amer. Meteor. Soc., 91, 13–20, doi:10.1175/2009BAMS2891.1.

  • Zhang, G. J., 2003: Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the U.S. Southern Great Plains. Geophys. Res. Lett., 30, 2281, doi:10.1029/2003GL018554.

  • Zhang, J., Wang W.-C. , and Leung L. R. , 2008: Contribution of land–atmosphere coupling to summer climate variability over the contiguous United States. J. Geophys. Res., 113, D22109, doi:10.1029/2008JD010136.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Klein S. A. , 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci., 67, 29432959, doi:10.1175/2010JAS3366.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Klein S. A. , 2013: Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: Investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site. J. Atmos. Sci., 70, 12971315, doi:10.1175/JAS-D-12-0131.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1417 691 78
PDF Downloads 560 102 15