• Aires, F., , Gentine P. , , Findell K. L. , , Lintner B. R. , , and Kerr C. , 2014: Neural network–based sensitivity analysis of summertime convection over the continental United States. J. Climate, 27, 19581979, doi:10.1175/JCLI-D-13-00161.1.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., , Mote T. L. , , Dixon P. G. , , Trotter S. L. , , Powell E. J. , , Durkee J. D. , , and Grundstein A. J. , 2003: Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev., 131, 30033017, doi:10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, A., , Findell K. , , Lintner B. R. , , Gentine P. , , and Kerr C. , 2013: Precipitation sensitivity to surface heat fluxes over North America in reanalysis and model data. J. Hydrometeor., 14, 722743, doi:10.1175/JHM-D-12-0111.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2009: Land-surface–atmosphere coupling in observations and models. J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2009.1.4.

  • Betts, A. K., , and Ball J. H. , 1995: The FIFE surface diurnal cycle climate. J. Geophys. Res., 100, 25 67925 693, doi:10.1029/94JD03121.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , Koster R. D. , , and Guo Z. , 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, doi:10.1175/JHM532.1.

    • Search Google Scholar
    • Export Citation
  • D’Odorico, P., , and Porporato A. , 2004: Preferential states in soil moisture and climate dynamics. Proc. Natl. Acad. Sci. USA, 101, 88488851, doi:10.1073/pnas.0401428101.

    • Search Google Scholar
    • Export Citation
  • Dong, X., and et al. , 2011: Investigation of the 2006 drought and 2007 flood extremes at the southern Great Plains through an integrative analysis of observations. J. Geophys. Res., 116, D03204, doi:10.1029/2010JD014776.

    • Search Google Scholar
    • Export Citation
  • Durre, I., , Vose R. S. , , and Wuertz D. B. , 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 5368, doi:10.1175/JCLI3594.1.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., , and Holtslag A. M. , 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, doi:10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., , and Wood E. F. , 2011: Observed land–atmosphere coupling from satellite remote sensing and reanalysis. J. Hydrometeor., 12, 12211254, doi:10.1175/2011JHM1380.1.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., , Wood E. F. , , and Vinukollu R. K. , 2012: A global intercomparison of modeled and observed land–atmosphere coupling. J. Hydrometeor., 13, 749784, doi:10.1175/JHM-D-11-0119.1.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , and Eltahir E. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , and Eltahir E. B. , 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, doi:10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , Gentine P. , , Lintner B. R. , , and Kerr C. , 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, doi:10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J., , Kane R. , , and Chelius C. , 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, doi:10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., , Holtslag A. A. M. , , D’Andrea F. , , and Ek M. , 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 14431462, doi:10.1175/JHM-D-12-0137.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and et al. , 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, doi:10.1175/JHM511.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., , Dirmeyer P. A. , , and DelSole T. , 2011: Land surface impacts on subseasonal and seasonal predictability. Geophys. Res. Lett., 38, L24812, doi:10.1029/2011GL049945.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., , Brockhaus P. , , Bretherton C. S. , , and Schaer C. , 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, doi:10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-Y., , and Margulis S. A. , 2011: Investigating the impact of soil moisture and atmospheric stability on cloud development and distribution using a coupled large-eddy simulation and land surface model. J. Hydrometeor., 12, 787804, doi:10.1175/2011JHM1315.1.

    • Search Google Scholar
    • Export Citation
  • Juang, J.-Y., , Porporato A. , , Stoy P. C. , , Siqueira M. S. , , Oishi A. C. , , Detto M. , , Kim H.-S. , , and Katul G. G. , 2007: Hydrologic and atmospheric controls on initiation of convective precipitation events. Water Resour. Res., 43, W03421, doi:10.1029/2006WR004954.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Schubert S. D. , , and Suarez M. J. , 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, doi:10.1175/2008JCLI2718.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, doi:10.1175/2011JHM1365.1.

    • Search Google Scholar
    • Export Citation
  • Liu, D., , Wang G. , , Mei R. , , Yu Z. , , and Gu H. , 2014: Diagnosing the strength of land–atmosphere coupling at subseasonal to seasonal time scales in Asia. J. Hydrometeor., 15, 320339, doi:10.1175/JHM-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Mei, R., , and Wang G. , 2012: Summer land–atmosphere coupling strength in the United States: Comparison among observations, reanalysis data, and numerical models. J. Hydrometeor., 13, 10101022, doi:10.1175/JHM-D-11-075.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., , Waliser D. E. , , Miller M. J. , , Shapiro M. A. , , Asrar G. R. , , and Caughey J. , 2012: Multiscale convective organization and the YOTC virtual global field campaign. Bull. Amer. Meteor. Soc., 93, 11711187, doi:10.1175/BAMS-D-11-00233.1.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., , and Ruiz-Barradas A. , 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: Varied representation. J. Climate, 19, 815837, doi:10.1175/JCLI3635.1.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., , and Nigam S. , 2013: Atmosphere–land surface interactions over the Southern Great Plains: Characterization from pentad analysis of DOE ARM field observations and NARR. J. Climate, 26, 875886, doi:10.1175/JCLI-D-11-00380.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., , Peters-Lidard C. D. , , and Kumar S. V. , 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, doi:10.1175/JHM-D-10-05014.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., , Peters-Lidard C. D. , , Kennedy A. , , and Kumar S. V. , 2013: Diagnosing the nature of land–atmosphere coupling: A case study of dry/wet extremes in the U.S. southern Great Plains. J. Hydrometeor., 14, 324, doi:10.1175/JHM-D-12-023.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., , Corti T. , , Davin E. L. , , Hirschi M. , , Jaeger E. B. , , Lehner I. , , Orlowsky B. , , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Tawfik, A. B., , and Dirmeyer P. A. , 2014: A process-based framework for quantifying the atmospheric preconditioning of surface-triggered convection. Geophys. Res. Lett., 41, 173–178, doi:10.1002/2013GL057984.

  • Tawfik, A. B., , Dirmeyer P. A. , , and Santanello J. A. , 2015: The heated condensation framework. Part I: Description and southern Great Plains case study. J. Hydrometeor., 16, 19291945, doi:10.1175/JHM-D-14-0117.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., , de Jeu R. A. M. , , Guichard F. , , Harris P. P. , , and Dorigo W. A. , 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, doi:10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., , Birch C. E. , , Parker D. J. , , Dixon N. , , Guichard F. , , Nikulin G. , , and Lister G. M. S. , 2013: Modeling soil moisture–precipitation feedback in the Sahel: Importance of spatial scale versus convective parameterization. Geophys. Res. Lett., 40, 62136218, doi:10.1002/2013GL058511.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., , de Arellano J. V.-G. , , Moene A. F. , , and Holtslag A. A. M. , 2009: Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quart. J. Roy. Meteor. Soc., 135, 12771291, doi:10.1002/qj.431.

    • Search Google Scholar
    • Export Citation
  • Wei, J., , and Dirmeyer P. A. , 2012: Dissecting soil moisture–precipitation coupling. Geophys. Res. Lett., 39, L19711, doi:10.1029/2012GL053038.

    • Search Google Scholar
    • Export Citation
  • Westra, D., , Steeneveld G. J. , , and Holtslag A. A. M. , 2012: Some observational evidence for dry soils supporting enhanced relative humidity at the convective boundary layer top. J. Hydrometeor., 13, 13471358, doi:10.1175/JHM-D-11-0136.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 20
PDF Downloads 35 35 11

The Heated Condensation Framework. Part II: Climatological Behavior of Convective Initiation and Land–Atmosphere Coupling over the Conterminous United States

View More View Less
  • 1 Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia
  • | 2 Hydrological Sciences, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

This is Part II of a two-part study introducing the heated condensation framework (HCF), which quantifies the potential convective state of the atmosphere in terms of land–atmosphere interactions. Part I introduced the full suite of HCF variables and applied them to case studies with observations and models over a single location in the southern Great Plains. It was shown in Part I that the HCF was capable of identifying locally initiated convection and quantifying energetically favorable pathways for initiation. Here, the HCF is applied to the entire conterminous United States and the climatology of convective initiation (CI) in relation to local land–atmosphere coupling (LoCo) is explored for 34 summers (June–August) using the North American Regional Reanalysis (NARR) and observations. NARR is found to be capable of capturing the convective threshold (buoyant mixing potential temperature θBM) and energy advantage transition (energy advantage potential temperature θadv) for most of the United States. However, there are compensating biases in the components of moisture qmix and temperature q*, resulting in low θBM biases for the wrong reason. The HCF has been used to show that local CI occurred over the Rocky Mountains and the southern Great Plains 35%–65% of the time. Finally, the LoCo process chain has been recast in light of the HCF. Both positive and negative soil moisture–convective feedbacks are possible, with negative feedbacks producing a stronger response in CI likelihood under weak convective inhibition. Positive feedbacks are present but weaker.

Current affiliation: Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Ahmed Tawfik, Climate and Global Dynamics, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. E-mail: abtawfik@ucar.edu

Abstract

This is Part II of a two-part study introducing the heated condensation framework (HCF), which quantifies the potential convective state of the atmosphere in terms of land–atmosphere interactions. Part I introduced the full suite of HCF variables and applied them to case studies with observations and models over a single location in the southern Great Plains. It was shown in Part I that the HCF was capable of identifying locally initiated convection and quantifying energetically favorable pathways for initiation. Here, the HCF is applied to the entire conterminous United States and the climatology of convective initiation (CI) in relation to local land–atmosphere coupling (LoCo) is explored for 34 summers (June–August) using the North American Regional Reanalysis (NARR) and observations. NARR is found to be capable of capturing the convective threshold (buoyant mixing potential temperature θBM) and energy advantage transition (energy advantage potential temperature θadv) for most of the United States. However, there are compensating biases in the components of moisture qmix and temperature q*, resulting in low θBM biases for the wrong reason. The HCF has been used to show that local CI occurred over the Rocky Mountains and the southern Great Plains 35%–65% of the time. Finally, the LoCo process chain has been recast in light of the HCF. Both positive and negative soil moisture–convective feedbacks are possible, with negative feedbacks producing a stronger response in CI likelihood under weak convective inhibition. Positive feedbacks are present but weaker.

Current affiliation: Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Ahmed Tawfik, Climate and Global Dynamics, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. E-mail: abtawfik@ucar.edu
Save