Radar Vertical Profile of Reflectivity Correction with TRMM Observations Using a Neural Network Approach

Yadong Wang Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Yadong Wang in
Current site
Google Scholar
PubMed
Close
,
Jian Zhang NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jian Zhang in
Current site
Google Scholar
PubMed
Close
,
Pao-Liang Chang Central Weather Bureau, Taipei, Taiwan

Search for other papers by Pao-Liang Chang in
Current site
Google Scholar
PubMed
Close
, and
Qing Cao Enterprise Electronics Corporation, Enterprise, Alabama

Search for other papers by Qing Cao in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Complex terrain poses challenges to the ground-based radar quantitative precipitation estimation (QPE) because of partial or total blockages of radar beams in the lower tilts. Reflectivities from higher tilts are often used in the QPE under these circumstances and biases are then introduced due to vertical variations of reflectivity. The spaceborne Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM) satellite can provide good measurements of the vertical structure of reflectivity even in complex terrain, but the poor temporal resolution of TRMM PR data limits their usefulness in real-time QPE. This study proposes a novel vertical profile of reflectivity (VPR) correction approach to enhance ground radar–based QPEs in complex terrain by integrating the spaceborne radar observations. In the current study, climatological relationships between VPRs from an S-band Doppler weather radar located on the east coast of Taiwan and the TRMM PR are developed using an artificial neural network (ANN). When a lower tilt of the ground radar is blocked, higher-tilt reflectivity data are corrected with the trained ANN and then applied in the rainfall estimation. The proposed algorithm was evaluated with three typhoon precipitation events, and its preliminary performance was evaluated and analyzed.

Corresponding author address: Yadong Wang, CIMMS, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: yadong.wang@noaa.gov

Abstract

Complex terrain poses challenges to the ground-based radar quantitative precipitation estimation (QPE) because of partial or total blockages of radar beams in the lower tilts. Reflectivities from higher tilts are often used in the QPE under these circumstances and biases are then introduced due to vertical variations of reflectivity. The spaceborne Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM) satellite can provide good measurements of the vertical structure of reflectivity even in complex terrain, but the poor temporal resolution of TRMM PR data limits their usefulness in real-time QPE. This study proposes a novel vertical profile of reflectivity (VPR) correction approach to enhance ground radar–based QPEs in complex terrain by integrating the spaceborne radar observations. In the current study, climatological relationships between VPRs from an S-band Doppler weather radar located on the east coast of Taiwan and the TRMM PR are developed using an artificial neural network (ANN). When a lower tilt of the ground radar is blocked, higher-tilt reflectivity data are corrected with the trained ANN and then applied in the rainfall estimation. The proposed algorithm was evaluated with three typhoon precipitation events, and its preliminary performance was evaluated and analyzed.

Corresponding author address: Yadong Wang, CIMMS, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: yadong.wang@noaa.gov
Save
  • Andrieu, H., and Creutin J. D. , 1995: Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteor., 34, 225239, doi:10.1175/1520-0450(1995)034<0225:IOVPOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bankert, R. L., and Aha D. W. , 1996: Improvement to a neural network cloud classifier. J. Appl. Meteor., 35, 20362039, doi:10.1175/1520-0450(1996)035<2036:ITANNC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., Hong Y. , Gourley J. J. , Qi Y. , Zhang J. , Wen Y. , and Kirstetter P.-E. , 2013a: Statistical and physical analysis of the vertical structure of precipitation in the mountainous west region of the United States using 11+ years of spaceborne observations from TRMM Precipitation Radar. J. Appl. Meteor. Climatol., 52, 408424, doi:10.1175/JAMC-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., Hong Y. , Qi Y. , Wen Y. , Zhang J. , Gourley J. J. , and Liao L. , 2013b: Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency. J. Geophys. Res. Atmos., 118, 18141825, doi:10.1002/jgrd.50138.

    • Search Google Scholar
    • Export Citation
  • Central Weather Bureau, 1995: The Basic Information of Meteorological Observation Statistic (in Chinese). 4th ed. Central Weather Bureau, 163 pp. [Available from the Central Weather Bureau, 64 Kung-Yun Rd., Taipei, Taiwan.]

  • Chen, T.-C., Yen M.-C. , Hsieh J.-C. , and Arritt R. W. , 1999: Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. Bull. Amer. Meteor. Soc., 80, 22992312, doi:10.1175/1520-0477(1999)080<2299:DASVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and Zawadzki I. , 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, doi:10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and Joss J. , 2002: Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J. Appl. Meteor., 41, 542557, doi:10.1175/1520-0450(2002)041<0542:MPTERP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goudenhoofdt, E., and Delobbe L. , 2009: Evaluation of radar–gauge merging methods for quantitative precipitation estimates. Hydrol. Earth Syst. Sci., 13, 195203, doi:10.5194/hess-13-195-2009.

    • Search Google Scholar
    • Export Citation
  • Hall, T., Brooks H. E. , and Doswell C. A. III, 1999: Precipitation forecasting using a neural network. Wea. Forecasting, 14, 338345, doi:10.1175/1520-0434(1999)014<0338:PFUANN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., and Kitchingam P. G. , 1975: Measurement of surface rainfall using radar when the beam intersects the melting layer. Preprints, 16th Radar Meteorology Conf., Houston, TX, Amer. Meteor. Soc., 473–478.

  • Hsu, K., Gupta H. V. , and Sorooshian S. , 1995: Artificial neural network modeling of the rainfall–runoff process. Water Resour. Res., 31, 25172530, doi:10.1029/95WR01955.

    • Search Google Scholar
    • Export Citation
  • Hung, N. Q., Babel M. S. , Weesakul S. , and Tripathi N. K. , 2009: An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrol. Earth Syst. Sci., 13, 14131425, doi:10.5194/hess-13-1413-2009.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Kwiatkowski J. , Meneghini R. , Awaka J. , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and Waldvogel A. , 1970: A method to improve the accuracy of radar measured amounts of precipitation. Preprints, 14th Radar Meteorology Conf., Tucson, AZ, Amer. Meteor. Soc., 237238.

  • Kirstetter, P., Andrieu H. , Delrieu G. , and Boudevillain B. , 2010: Identification of vertical profiles of reflectivity for correction of volumetric radar data using rainfall classification. J. Appl. Meteor. Climatol., 49, 21672180, doi:10.1175/2010JAMC2369.1.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., 1997: Towards improved radar estimates of surface precipitation at long range. Quart. J. Roy. Meteor. Soc., 123, 145163, doi:10.1002/qj.49712353706.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., and Coauthors, 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 39, 102116, doi:10.1109/36.898669.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lai, L.-H., and Wu P.-H. , 2010: Risk analysis of rice losses caused by typhoon for Taiwan. Contemp. Manage. Res., 6, 141158.

  • Lakshmanan, V., Frit A. , Smith T. , Hondl K. , and Stumpf G. J. , 2007: An automated technique to quality control radar reflectivity data. J. Appl. Meteor., 46, 288305, doi:10.1175/JAM2460.1.

    • Search Google Scholar
    • Export Citation
  • Luk, K. C., Ball J. E. , and Sharma A. , 2001: An application of artificial neural networks for rainfall forecasting. Math. Comput. Modell., 33, 683693, doi:10.1016/S0895-7177(00)00272-7.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., Vulpiani G. , and Picciotti E. , 2004: Rain field and reflectivity vertical profile reconstruction from C-band radar volumetric data. IEEE Trans. Geosci. Remote Sens., 42, 10331046, doi:10.1109/TGRS.2003.820313.

    • Search Google Scholar
    • Export Citation
  • Marzban, C., and Stumpf G. J. , 1998: A neural network for damaging wind prediction. Wea. Forecasting, 13, 151163, doi:10.1175/1520-0434(1998)013<0151:ANNFDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Iguchi T. , Kozu T. , Liao L. , Okamoto K. , Jones J. A. , and Kwiatkowski J. , 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39, 20532070, doi:10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Iguchi T. , Kozu T. , Liao L. , Okamoto K. , and Kwiatkowski J. , 2004: A hybrid surface reference technique and its application to the TRMM precipitation radar. J. Atmos. Oceanic Technol., 21, 16451658, doi:10.1175/JTECH1664.1.

    • Search Google Scholar
    • Export Citation
  • Orlandini, S., and Morlini I. , 2000: Artificial neural network estimation of rainfall intensity from radar observations. J. Geophys. Res., 105, 24 84924 861, doi:10.1029/2000JD900408.

    • Search Google Scholar
    • Export Citation
  • Qi, Y., Zhang J. , Zhang P. , and Cao Q. , 2013: VPR correction of bright band effects in radar QPEs using polarimetric radar observations. J. Geophys. Res. Atmos., 118, 36273633, doi:10.1002/jgrd.50364.

    • Search Google Scholar
    • Export Citation
  • Rico-Ramirez, M. A., Cluckie I. D. , and Han D. , 2005: Correction of the bright band using dual-polarisation radar. Atmos. Sci. Lett., 6, 4046, doi:10.1002/asl.89.

    • Search Google Scholar
    • Export Citation
  • Rico-Ramirez, M. A., Cluckie I. D. , Shepherd G. , and Pallot A. , 2007: A high-resolution radar experiment on the island of Jersey. Meteor. Appl., 14, 117129, doi:10.1002/met.13.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., Butt M. R. , Reinke S. J. , and Grafenauer T. J. , 2007: Real-time forecasting of snowfall using a neural network. Wea. Forecasting, 22, 676684, doi:10.1175/WAF1000.1.

    • Search Google Scholar
    • Export Citation
  • Schaake, J., Henkel A. , and Cong S. , 2004: Application of PRISM climatologies for hydrologic modeling and forecasting in the western U.S. Preprints, 18th Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., 5.3. [Available online at http://ams.confex.com/ams/pdfpapers/72159.pdf.]

  • Smyth, T. J., and Illingworth A. J. , 1998: Radar estimates of rainfall rates at the ground in bright band and non-bright band events. Quart. J. Roy. Meteor. Soc., 124, 24172434, doi:10.1002/qj.49712455112.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Zhang J. , Ryzhkov A. V. , and Tang L. , 2013: C-band polarimetric radar QPE based on specific differential propagation phase for extreme typhoon rainfall. J. Atmos. Oceanic Technol., 30, 13541370, doi:10.1175/JTECH-D-12-00083.1.

    • Search Google Scholar
    • Export Citation
  • Wen, Y., Cao Q. , Kirstetter P.-E. , Hong Y. , Gourley J. J. , Zhang J. , Zhang G. , and Yong B. , 2013: Incorporating NASA spaceborne radar data into NOAA National Mosaic QPE system for improved precipitation measurement: A physically based VPR identification and enhancement method. J. Hydrometeor., 14, 12931307, doi:10.1175/JHM-D-12-0106.1.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., and Heymsfield A. J. , 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46, 20082025, doi:10.1175/1520-0469(1989)046<2008:SOTMLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, X., Howard K. , and Zhang J. , 2008: An automatic radar technique for the identification of tropical precipitation. J. Hydrometeor., 9, 885902, doi:10.1175/2007JHM954.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Qi Y. , 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. J. Hydrometeor., 11, 11571171, doi:10.1175/2010JHM1201.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Langston C. , and Howard K. , 2008: Brightband identification based on vertical profiles of reflectivity from the WSR-88D. J. Atmos. Oceanic Technol., 25, 18591872, doi:10.1175/2008JTECHA1039.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Qi Y. , Kingsmill D. , and Howard K. , 2012: Radar-based quantitative precipitation estimation for the cool season in complex terrain: Case studies from the NOAA Hydrometeorology Testbed. J. Hydrometeor., 13, 18361854, doi:10.1175/JHM-D-11-0145.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Ryzhkov A. V. , 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454464, doi:10.1175/1520-0426(1996)013<0454:AORMUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1022 748 264
PDF Downloads 250 31 4