Using CERES SYN Surface Irradiance Data as Forcing for Snowmelt Simulation in Complex Terrain

Laura M. Hinkelman Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Search for other papers by Laura M. Hinkelman in
Current site
Google Scholar
PubMed
Close
,
Karl E. Lapo Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Karl E. Lapo in
Current site
Google Scholar
PubMed
Close
,
Nicoleta C. Cristea Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Nicoleta C. Cristea in
Current site
Google Scholar
PubMed
Close
, and
Jessica D. Lundquist Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington

Search for other papers by Jessica D. Lundquist in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The benefit of using solar and longwave surface irradiance data from NASA’s Clouds and the Earth’s Radiant Energy System (CERES) synoptic (SYN) satellite product in simulations of snowmelt has been examined. The accuracy of the SYN downwelling solar and longwave irradiances was first assessed by comparison to measurements at NOAA’s Surface Radiation Network (SURFRAD) reference stations and to remote mountain observations. Typical shortwave (longwave) biases had magnitudes less than 30 (10) W m−2, with most standard deviations below 140 (30) W m−2. The performance of a range of snow models of varying complexity when using SYN irradiances as forcing data was then evaluated. Simulated snow water equivalent and runoff from cases using SYN data fell in the range of those from simulations forced with irradiances from well-maintained surface observation sites as well as empirical methods that have been shown to perform well in mountainous terrain. The SYN irradiances are therefore judged to be suitable for use in snowmelt modeling. It is also noted that the SYN upwelling shortwave irradiances, and hence albedos derived from them, are frequently not representative of individual monitoring stations because of the high spatial variability of snow cover and other surface properties in mountainous regions. In addition, adjusting the SYN downwelling longwave irradiances to reflect the exact elevation of the point of interest relative to the mean altitude of the satellite grid box is recommended.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0179.s1.

Corresponding author address: Dr. Laura Hinkelman, JISAO, University of Washington, 3737 Brooklyn Ave. NE, Seattle, WA 98105. E-mail: laurahin@uw.edu

Abstract

The benefit of using solar and longwave surface irradiance data from NASA’s Clouds and the Earth’s Radiant Energy System (CERES) synoptic (SYN) satellite product in simulations of snowmelt has been examined. The accuracy of the SYN downwelling solar and longwave irradiances was first assessed by comparison to measurements at NOAA’s Surface Radiation Network (SURFRAD) reference stations and to remote mountain observations. Typical shortwave (longwave) biases had magnitudes less than 30 (10) W m−2, with most standard deviations below 140 (30) W m−2. The performance of a range of snow models of varying complexity when using SYN irradiances as forcing data was then evaluated. Simulated snow water equivalent and runoff from cases using SYN data fell in the range of those from simulations forced with irradiances from well-maintained surface observation sites as well as empirical methods that have been shown to perform well in mountainous terrain. The SYN irradiances are therefore judged to be suitable for use in snowmelt modeling. It is also noted that the SYN upwelling shortwave irradiances, and hence albedos derived from them, are frequently not representative of individual monitoring stations because of the high spatial variability of snow cover and other surface properties in mountainous regions. In addition, adjusting the SYN downwelling longwave irradiances to reflect the exact elevation of the point of interest relative to the mean altitude of the satellite grid box is recommended.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0179.s1.

Corresponding author address: Dr. Laura Hinkelman, JISAO, University of Washington, 3737 Brooklyn Ave. NE, Seattle, WA 98105. E-mail: laurahin@uw.edu

Supplementary Materials

    • Supplemental Materials (DOCX 5.96 MB)
Save
  • Anderson-Teixeira, K. J., Delong J. P. , Fox A. M. , Brese D. A. , and Litvak M. E. , 2011: Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Global Change Biol., 17, 410424, doi:10.1111/j.1365-2486.2010.02269.x.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., DeLuisi J. J. , and Long C. N. , 2000: SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Amer. Meteor. Soc., 81, 23412357, doi:10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., Hodges G. B. , Cornwall C. R. , Michalsky J. J. , and Medina C. I. , 2005: An update on SURFRAD—The GCOS surface radiation budget network for the continental United States. J. Atmos. Oceanic Technol., 22, 14601472, doi:10.1175/JTECH1806.1.

    • Search Google Scholar
    • Export Citation
  • Battin, J. M., Wiley W. , Ruckelshaus M. H. , Palmer R. N. , Korb E. , Bartz K. K. , and Imaki H. , 2007: Projected impacts of climate change on salmon habitat restoration. Proc. Natl. Acad. Sci. USA, 104, 67206725, doi:10.1073/pnas.0701685104.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2006: Mountain weather and climate: A general overview and a focus on climatic change in the Alps. Hydrobiologia, 562, 316, doi:10.1007/s10750-005-1802-0.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Ball J. H. , 1997: Albedo over the boreal forest. J. Geophys. Res., 102, 28 90128 909, doi:10.1029/96JD03876.

  • Bewley, D., Alila Y. , and Varhola A. , 2010: Variability of snow water equivalent and snow energetics across a large catchment subject to Mountain Pine Beetle infestation and rapid salvage logging. J. Hydrol., 388, 464479, doi:10.1016/j.jhydrol.2010.05.031.

    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., Livneh B. , Oyler J. W. , Running S. W. , Nijssen B. , and Lettenmaier D. P. , 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. For. Meteor., 176, 3849, doi:10.1016/j.agrformet.2013.03.003.

    • Search Google Scholar
    • Export Citation
  • Bristow, K. L., and Campbell G. S. , 1984: On the relationship between incoming solar-radiation and daily maximum and minimum temperature. Agric. For. Meteor., 31, 159166, doi:10.1016/0168-1923(84)90017-0.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., and Duchon C. E. , 2000: A field comparison among a domeless net radiometer, two four-component net radiometers, and a domed net radiometer. J. Atmos. Oceanic Technol., 17, 15691582, doi:10.1175/1520-0426(2000)017<1569:AFCAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1975: Derivable formula for long-wave radiation from clear skies. Water Resour. Res., 11, 742744, doi:10.1029/WR011i005p00742.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History, and Applications. D. Reidel, 299 pp.

  • Cline, D. W., 1997: Snow surface energy exchanges and snowmelt at a continental, midlatitude Alpine site. Water Resour. Res., 33, 689701, doi:10.1029/97WR00026.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., and Duchon C. E. , 1999: An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteor., 38, 474480, doi:10.1175/1520-0450(1999)038<0474:AIPFEE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cristea, N. C., Lundquist J. D. , Loheide S. P. II, Lowry C. S. , and Moore C. E. , 2014: Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmelt-dominated upper Tuolumne basin, Sierra Nevada. Hydrol. Processes, 28, 3896–3918, doi:10.1002/hyp.9909.

  • Dilley, A. C., and O’Brien D. M. , 1998: Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Quart. J. Roy. Meteor. Soc., 124, 13911401, doi:10.1002/qj.49712454903.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, doi:10.1175/JTECH-D-12-00136.1.

    • Search Google Scholar
    • Export Citation
  • Dutton, E. G., Long C. , Wild M. , Ohmura A. , Groebner J. , and Roesch A. , 2012: Long-term in-situ surface flux data products. GEWEX Radiative Flux Assessment (RFA) Volume 1: Assessment, WCRP Rep. 19/2012, 136–148.

  • Essery, R., Moring S. , Lejeune Y. , and Menard C. B. , 2013: A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour., 55, 131148, doi:10.1016/j.advwatres.2012.07.013.

    • Search Google Scholar
    • Export Citation
  • Flerchinger, G. N., Xaio W. , Marks D. , Sauer T. J. , and Yu Q. , 2009: Comparison of algorithms for incoming atmospheric long-wave radiation. Water Resour. Res., 45, W03423, doi:10.1029/2008WR007394

    • Search Google Scholar
    • Export Citation
  • Frank, J. M., Massman W. J. , Ewers B. E. , Huckaby L. S. , and Negrón J. F. , 2014: Ecosystem CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles. J. Geophys. Res. Biogeosci., 119, 11951215, doi:10.1002/2013JG002597.

    • Search Google Scholar
    • Export Citation
  • Gray, D. M., and Prowse T. D. , 1993: Snow and floating ice. Handbook of Hydrology, D. R. Maidment, Ed., McGraw-Hill, 7.1–7.58.

  • Ha, W., Kolb T. E. , Springer A. E. , Dore S. , O’Donnell F. C. , Martinez Morales R. , Masek Lopez S. , and Koch G. W. , 2015: Evapotranspiration comparisons between eddy covariance measurements and meteorological and remote-sensing-based models in disturbed ponderosa pine forests. Ecohydrology, doi: 10.1002/eco.1586, in press.

    • Search Google Scholar
    • Export Citation
  • Hungerford, R. D., Nemani R. R. , Running S. W. , and Coughlan J. C. , 1989: MTCLIM: A mountain microclimate simulation model. USDA Forest Service Research Paper INT-414, 52 pp. [Available online at http://www.fs.fed.us/rm/pubs_int/int_rp414.pdf.]

  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover. Tech. Doc. for SNTHERM.89, CRREL Special Rep. 91-16, U.S. Army Corps of Engineers, 49 pp.

  • Kimball, B. A., Idso S. B. , and Aase J. K. , 1982: A model of thermal radiation from partly cloudy and overcast skies. Water Resour. Res., 18, 931936, doi:10.1029/WR018i004p00931.

    • Search Google Scholar
    • Export Citation
  • Knowles, N., Dettinger M. D. , and Cayan D. R. , 2006: Trends in snowfall versus rainfall in the western United States. J. Climate, 19, 45454559, doi:10.1175/JCLI3850.1.

    • Search Google Scholar
    • Export Citation
  • Landry, C. C., Buck K. A. , Raleigh M. S. , and Clark M. P. , 2014: Mountain system monitoring at Senator Beck basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes. Water Resour. Res., 50, 17731788, doi:10.1002/2013WR013711.

    • Search Google Scholar
    • Export Citation
  • Lapo, K., Hinkelman L. M. , Raleigh M. S. , and Lundquist J. D. , 2015a: Impact of errors in the downwelling irradiances on simulations of snow water equivalent, snow surface temperature, and the snow energy balance. Water Resour. Res., 51, 16491670, doi:10.1002/2014WR016259.

    • Search Google Scholar
    • Export Citation
  • Lapo, K., Hinkelman L. M. , Landry C. C. , Massmann A. K. , and Lundquist J. D. , 2015b: A simple algorithm for identifying periods of snow accumulation on a pyranometer. Water Resour. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Law, B. E., Williams M. , Anthoni P. M. , Baldocchi D. D. , and Unsworth M. H. , 2000: Measuring and modelling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit. Global Change Biol., 6, 613630, doi:10.1046/j.1365-2486.2000.00339.x.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Cribb M. C. , and Chang F.-L. , 2005: Natural variability and sampling errors in solar radiation measurements for model validation over the Atmospheric Radiation Measurement Southern Great Plains region. J. Geophys. Res., 110, D15S19, doi:10.1029/2004JD005028.

    • Search Google Scholar
    • Export Citation
  • Luce, C. H., Tarboton D. G. , and Cooley R. R. , 1998: The influence of the spatial distribution of snow on basin-averaged snowmelt. Hydrol. Processes, 12, 16711683, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1671::AID-HYP688>3.0.CO;2-N.

    • Search Google Scholar
    • Export Citation
  • Male, D. H., and Granger R. J. , 1981: Snow surface energy exchange. Water Resour. Res., 17, 609627, doi:10.1029/WR017i003p00609.

  • Marks, D., and Dozier J. , 1992: Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res., 28, 30433054, doi:10.1029/92WR01483.

    • Search Google Scholar
    • Export Citation
  • Marks, D., Seyfried M. , Flerchinger G. , and Winstral A. , 2007: Research data collection at the Reynolds Creek Experimental Watershed. J. Serv. Climatol., 1 (4), 112.

    • Search Google Scholar
    • Export Citation
  • Marty, C., Philipona R. , Fröhlich C. , and Ohmura A. , 2002: Altitude dependence of surface radiation fluxes and cloud forcing in the Alps: Results from the Alpine Surface Radiation Budget network. Theor. Appl. Climatol., 72, 137155, doi:10.1007/s007040200019.

    • Search Google Scholar
    • Export Citation
  • McArthur, L. J. B., 2005: Baseline Surface Radiation Network (BSRN) operations manual version 2.1. World Climate Research Programme Publ. WCRP-121, 188 pp. [Available online at https://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/WCRP/WCRP21_TD1274_BSRN.pdf.]

  • McMillan, G. D., 1981: SNOTEL: A management tool for the future. Proc. 49th Annual Western Snow Conf., St. George, UT, Western Snow Conference, 116119. [Available online at http://www.westernsnowconference.org/node/901.]

  • Michel, D., Philipona R. , Ruckstuhl C. , Vogt R. , and Vuilleumier L. , 2008: Performance and uncertainty of CNR1 net radiometers during a one-year field comparison. J. Atmos. Oceanic Technol., 25, 442451, doi:10.1175/2007JTECHA973.1.

    • Search Google Scholar
    • Export Citation
  • Mizukami, N., Clark M. P. , Slater A. G. , Brekke L. D. , Elsner M. M. , Arnold J. R. , and Gangopadhyay S. , 2014: Hydrologic implications of different large-scale meteorological model forcing datasets in mountainous regions. J. Hydrometeor., 15, 474488, doi:10.1175/JHM-D-13-036.1.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., Haddeland I. , and Lettenmaier D. P. , 1997: Point evaluation of a surface hydrology model for BOREAS. J. Geophys. Res., 102, 29 36729 378, doi:10.1029/97JD01217.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., 2001: Physical basis for the temperature-based melt-index method. J. Appl. Meteor., 40, 753761, doi:10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 21152136, doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osterhuber, R., 1999: Climate summary of Donner Summit, California, 1870–1999. Central Sierra Snow Laboratory Tech. Rep., Soda Springs, CA, 1–11.

  • Pomeroy, J. W., Toth B. , Granger R. J. , Hedstrom N. R. , and Essery R. L. H. , 2003: Variation in surface energetics during snowmelt in a subarctic mountain catchment. J. Hydrometeor., 4, 702719, doi:10.1175/1525-7541(2003)004<0702:VISEDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 1996: A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart. J. Roy. Meteor. Soc., 122, 11271151, doi:10.1002/qj.49712253306.

    • Search Google Scholar
    • Export Citation
  • Radkevich, A., Khlopenkov K. , Rutan D. , and Kato S. , 2013: A supplementary clear-sky snow and ice recognition technique for CERES Level 2 products. J. Atmos. Oceanic Technol., 30, 557568, doi:10.1175/JTECH-D-12-00100.1.

    • Search Google Scholar
    • Export Citation
  • Raleigh, M. S., 2013: Quantification of uncertainties in snow accumulation, snowmelt, and snow disappearance dates. Ph.D. dissertation, University of Washington, 206 pp.

  • Raleigh, M. S., and Lundquist J. D. , 2012: Comparing and combining SWE estimates from the SNOW-17 model using PRISM and SWE reconstruction. Water Resour. Res., 48, W01506, doi:10.1029/2011WR010542.

    • Search Google Scholar
    • Export Citation
  • Raphael, C., and Hay J. E. , 1984: Assessment of models which use satellite data to estimate solar irradiance at the earth’s surface. J. Climate Appl. Meteor., 23, 832844, doi:10.1175/1520-0450(1984)023<0832:AAOMWU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reba, M. L., Marks D. , Seyfried M. , Winstral A. , Kumar M. , and Flerchinger G. , 2011: A long-term data set for hydrologic modeling in a snow-dominated mountain catchment. Water Resour. Res., 47, W07702, doi:10.1029/2010WR010030.

    • Search Google Scholar
    • Export Citation
  • Regonda, S. K., Rajagopalan B. , Clark M. , and Pitlick J. , 2005: Seasonal cycle shifts in hydroclimatology over the western United States. J. Climate, 18, 372384, doi:10.1175/JCLI-3272.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Garder L. C. , 1993: Validation of ISCCP cloud detections. J. Climate, 6, 23702393, doi:10.1175/1520-0442(1993)006<2370:VOICD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., Kato S. , Doelling D. R. , Rose F. G. , Nguyen L. T. , Caldwell T. E. , and Loeb N. G. , 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 1121–1143, doi:10.1175/JTECH-D-14-00165.1.

    • Search Google Scholar
    • Export Citation
  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063.

    • Search Google Scholar
    • Export Citation
  • Schulz, O., and de Jong C. , 2004: Snowmelt and sublimation: Field experiments and modelling in the High Atlas Mountains of Morocco. Hydrol. Earth Syst. Sci., 8, 10761089, doi:10.5194/hess-8-1076-2004.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2, 725, doi:10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., Cayan D. R. , and Dettinger M. D. , 2005: Changes towards earlier streamflow timing across western North America. J. Climate, 18, 11361155, doi:10.1175/JCLI3321.1.

    • Search Google Scholar
    • Export Citation
  • Su, H., Wood E. F. , Wang H. , and Pinker R. T. , 2008: Spatial and temporal scaling behavior of surface shortwave downward radiation based on MODIS and in situ measurements. IEEE Geosci. Remote Sens. Lett., 5, 542546, doi:10.1109/LGRS.2008.923209.

    • Search Google Scholar
    • Export Citation
  • Sun, M., and Cess R. D. , 2005: Improvements in cloud identification over snow/ice surfaces from ERBE to CERES. Geophys. Res. Lett., 32, L05801, doi:10.1029/2004GL022009.

    • Search Google Scholar
    • Export Citation
  • Tarboton, D. G., and Luce C. H. , 1996: Utah Energy Balance Snow Accumulation and Melt Model (UEB). Tech. Doc., Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station, 64 pp. [Available online at www.fs.fed.us/rm/boise/publications/watershed/rmrs_1996_tarbotond001.pdf.]

  • Taylor, S., Feng X. H. , Kirchner J. W. , Osterhuber R. , Klaue B. , and Renshaw C. E. , 2001: Isotopic evolution of a seasonal snowpack and its melt. Water Resour. Res., 37, 759769, doi:10.1029/2000WR900341.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Running S. W. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93, 211228, doi:10.1016/S0168-1923(98)00126-9.

    • Search Google Scholar
    • Export Citation
  • Turnipseed, A. A., Blanken P. D. , Anderson D. E. , and Monson R. K. , 2002: Energy budget above a high-elevation subalpine forest in complex topography. Agric. For. Meteor., 110, 177201, doi:10.1016/S0168-1923(01)00290-8.

    • Search Google Scholar
    • Export Citation
  • U.S. Army Corps of Engineers, 1956: Summary report of the snow investigations: Snow hydrology. U.S. Army Corps of Engineers North Pacific Division Rep. NTIS PB-151660, 437 pp. [Available online at ftp://ftp.wcc.nrcs.usda.gov/wntsc/H&H/snow/SnowHydrologyCOE1956.pdf.]

  • Watson, F. G. R., Newman W. B. , Coughlan J. C. , and Garrott R. A. , 2006: Testing a distributed snowpack simulation model against spatial observations. J. Hydrol., 328, 453466, doi:10.1016/j.jhydrol.2005.12.012.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., Barkstrom B. R. , Harrison E. F. , Lee R. B. III, Smith G. L. , and Cooper J. E. , 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., Vail L. W. , and Lettenmaier D. P. , 1994: A distributed hydrology-vegetation model for complex terrain. Water Resour. Res., 30, 16651679, doi:10.1029/94WR00436.

    • Search Google Scholar
    • Export Citation
  • Wiley, M. W., and Palmer R. N. , 2008: Estimating the impacts and uncertainty of climate change on a municipal water supply system. J. Water Resour. Plann. Manage., 134, 239246, doi:10.1061/(ASCE)0733-9496(2008)134:3(239).

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 464 pp.

  • World Meteorological Organization, 2008: Guide to meteorological instruments and methods of observation. Publ. WMO 8, 681 pp. [Available online at www.wmo.int/pages/prog/gcos/documents/gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf.]

  • Xia, Y., Yang Z.-L. , Stoffa P. L. , and Sen M. K. , 2005: Using different hydrological variables to assess the impacts of atmospheric forcing errors on optimization and uncertainty analysis of the CHASM surface model at a cold catchment. J. Geophys. Res., 110, D01101, doi:10.1029/2004JD005130.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Long C. N. , Rossow W. B. , and Dutton E. G. , 2010: Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD. J. Geophys. Res., 115, D15105, doi:10.1029/2009JD012743.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 692 299 71
PDF Downloads 382 78 8