Performance Evaluation of the Canadian Precipitation Analysis (CaPA)

Franck Lespinas Meteorological Research Division, Canadian Meteorological Centre, Dorval, Québec, Canada

Search for other papers by Franck Lespinas in
Current site
Google Scholar
PubMed
Close
,
Vincent Fortin Meteorological Research Division, Canadian Meteorological Centre, Dorval, Québec, Canada

Search for other papers by Vincent Fortin in
Current site
Google Scholar
PubMed
Close
,
Guy Roy National Severe Weather Lab, Montréal, Québec, Canada

Search for other papers by Guy Roy in
Current site
Google Scholar
PubMed
Close
,
Peter Rasmussen Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada

Search for other papers by Peter Rasmussen in
Current site
Google Scholar
PubMed
Close
, and
Tricia Stadnyk Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada

Search for other papers by Tricia Stadnyk in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper presents an assessment of the operational system used by the Meteorological Service of Canada for producing near-real-time precipitation analyses over North America. The Canadian Precipitation Analysis (CaPA) system optimally combines available surface observations with numerical weather prediction (NWP) output in order to produce estimates of precipitation on a 15-km grid at each synoptic hour (0000, 0600, 1200, and 1800 UTC). The validation protocol used to assess the quality of the CaPA has demonstrated the usefulness of the system for producing reliable estimates of precipitation over Canada, even in areas with few or no weather stations. The CaPA is found to be better in autumn, spring, and winter than in summer. This is because of the difficulty in correctly producing convective precipitation in the NWP because of the low spatial resolution of the meteorological model. An investigation of the quality of the precipitation analyses in the 15 terrestrial ecozones of Canada indicates the need to have a sufficient number of observations (at least ~1.17 stations per 10 000 km2) in order to produce a precipitation analysis that is significantly better than the raw NWP product. Improvements of the CaPA system by including provincial networks as well as radar and satellite information are expected in the future.

Corresponding author address: Franck Lespinas, Meteorological Research Division, Canadian Meteorological Centre, 2121 TransCanada Highway, Dorval, QC H9P 1J3, Canada. E-mail: franck.lespinas@ec.gc.ca

Abstract

This paper presents an assessment of the operational system used by the Meteorological Service of Canada for producing near-real-time precipitation analyses over North America. The Canadian Precipitation Analysis (CaPA) system optimally combines available surface observations with numerical weather prediction (NWP) output in order to produce estimates of precipitation on a 15-km grid at each synoptic hour (0000, 0600, 1200, and 1800 UTC). The validation protocol used to assess the quality of the CaPA has demonstrated the usefulness of the system for producing reliable estimates of precipitation over Canada, even in areas with few or no weather stations. The CaPA is found to be better in autumn, spring, and winter than in summer. This is because of the difficulty in correctly producing convective precipitation in the NWP because of the low spatial resolution of the meteorological model. An investigation of the quality of the precipitation analyses in the 15 terrestrial ecozones of Canada indicates the need to have a sufficient number of observations (at least ~1.17 stations per 10 000 km2) in order to produce a precipitation analysis that is significantly better than the raw NWP product. Improvements of the CaPA system by including provincial networks as well as radar and satellite information are expected in the future.

Corresponding author address: Franck Lespinas, Meteorological Research Division, Canadian Meteorological Centre, 2121 TransCanada Highway, Dorval, QC H9P 1J3, Canada. E-mail: franck.lespinas@ec.gc.ca
Save
  • Acharya, N., Chattopadhyay S. , Mohanty U. C. , Dash S. K. , and Sahoo L. N. , 2013: On the bias correction of general circulation model output for Indian summer monsoon. Meteor. Appl., 20, 349–356, doi:10.1002/met.1294.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Kidd C. , Petty G. , Morissey M. , and Goodman H. M. , 2001: Intercomparison of global precipitation products: The Third Precipitation Intercomparison Project (PIP–3). Bull. Amer. Meteor. Soc., 82, 1377–1396, doi:10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., Seifert A. , Förstner J. , Majewski D. , and Raschendorfer M. , 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 3887–3905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Ballester, J., and Moré J. , 2007: The representativeness problem of a station net applied to the verification of a precipitation forecast based on areas. Roy. Meteor. Soc., 14, 177–184, doi:10.1002/met.20.

    • Search Google Scholar
    • Export Citation
  • Beck, C., Grieser J. , and Rudolf B. , 2005: A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Klimastatusbericht 2004, DWD, 181–189. [Available online at ftp://ftp.dwd.de/pub/data/gpcc/PDF/pdf_28_precipitation.pdf.]

  • Bousquet, O., Lin C. A. , and Zawadzki I. , 2006: Analysis of scale-dependence of quantitative precipitation forecast verification: A case-study over the Mackenzie River basin. Quart. J. Roy. Meteor. Soc., 132, 2107–2125, doi:10.1256/qj.05.154.

    • Search Google Scholar
    • Export Citation
  • Brown, B. G., and Coauthors, 2008: Recommendations for the verification and intercomparison of QPFs and PQPFs from operational NWP models. Revision 2, WWRP 2009-1, 37 pp. [Available online at http://www.wmo.int/pages/prog/arep/wwrp/new/documents/WWRP2009-1_web_CD.pdf.]

  • Brown, J. D., Seo D.-J. , and Du J. , 2012: Verification of precipitation forecasts from NCEP’s short-range ensemble forecast (SREF) system with reference to ensemble streamflow prediction using lumped hydrologic models. J. Hydrometeor., 13, 808–836, doi:10.1175/JHM-D-11-036.1.

    • Search Google Scholar
    • Export Citation
  • Carrera, M., Fortin V. , and Bélair S. , 2009: Development of the Canadian Precipitation Analysis (CaPA) and the Canadian Land Data Assimilation System (CalDAS). DRI Precipitation and Drought Indices Workshop, Downsview, Ontario, Environment Canada, 15 pp. [Available online at http://www.meteo.mcgill.ca/dri/09precip/marco.pdf.]

  • Carrera, M., Bélair S. , Fortin V. , Bilodeau B. , Charpentier D. , and Doré I. , 2010: Evaluation of snowpack simulations over the Canadian Rockies with an experimental hydrometeorological modeling system. J. Hydrometeor., 11, 1123–1140, doi:10.1175/2010JHM1274.1.

    • Search Google Scholar
    • Export Citation
  • Chilès, J. P., and Delfiner P. , 1999: Geostatistics: Modeling Spatial Uncertainty. Wiley, 695 pp.

  • Côté, J., Gravel S. , Méthot A. , Patoine A. , Roch M. , and Staniforth A. , 1998a: The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 1373–1395, doi:10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Côté, J., Desmarais J.-G. , Gravel S. , Méthot A. , Patoine A. , Roch M. , and Staniforth A. , 1998b: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 126, 1397–1418, doi:10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Creutin, J. D., Delrieu G. , and Lebel T. , 1988: Rain measurement by raingage–radar combination: A geostatistical approach. J. Atmos. Oceanic Technol., 5, 102–115, doi:10.1175/1520-0426(1988)005<0102:RMBRRC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Deacu, D., Fortin V. , Klyszejko E. , Spence C. , and Blanken P. D. , 2012: Predicting the net basin supply to the Great Lakes with a hydrometeorological model. J. Hydrometeor., 13, 1739–1759, doi:10.1175/JHM-D-11-0151.1.

    • Search Google Scholar
    • Export Citation
  • Deuflhard, P., 2004: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptative Algorithms. Springer Series in Computational Mathematics, Vol. 35, Springer, 424 pp.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Damrath U. , Wergen W. , and Baldwin M. E. , 2003: The WGNE assessment of short-term quantitative precipitation forecasts. Bull. Amer. Meteor. Soc., 84, 481–492, doi:10.1175/BAMS-84-4-481.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 47–64, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Evans, A., 2013: Investigation of enhancements to two fundamental components of the statistical interpolation method used by the Canadian Precipitation Analysis (CaPA). M.S. thesis, Dept. of Civil Engineering, University of Manitoba, 307 pp. [Available online at http://hdl.handle.net/1993/22276.]

  • Ferro, C. A. T., and Stephenson D. B. , 2011: Extremal dependence indices: Improved verification measures for deterministic forecasts of rare binary events. Wea. Forecasting, 26, 699–713, doi:10.1175/WAF-D-10-05030.1.

    • Search Google Scholar
    • Export Citation
  • Fortin, V., 2007: Analyse de précipitation CaPA: Proposition d’installation d’une passe parallèle. Séminaire Recherche en Prévision Numérique, Dorval, QC, Canada, Environment Canada, 65 pp. [Available online at http://collaboration.cmc.ec.gc.ca/science/rpn/SEM/dossiers/2007/seminaires/2007-10-26/Fortin2007RPN_CaPA_final.pdf.]

  • Goodison, B. E., Louie P. Y. T. , and Yang D. , 1998: WMO solid precipitation measurement intercomparison. WMO Rep. WMO TD-872, 212 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-67-solid-precip/WMOtd872.pdf.]

  • Haiden, T., and Pistotnik G. , 2009: Intensity-dependent parameterization of elevation effects in precipitation analysis. Adv. Geosci., 20, 33–38, doi:10.5194/adgeo-20-33-2009.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and Kostinski A. B. , 2002: Spurious power-law relations among rainfall and radar parameters. Quart. J. Roy. Meteor. Soc., 128, 2045–2058, doi:10.1256/003590002320603520.

    • Search Google Scholar
    • Export Citation
  • Janis, M. J., and Robeson S. M. , 2004: Determining the spatial representativeness of air-temperature records using a variogram-nugget time series. Phys. Geogr., 25, 513–530, doi:10.2747/0272-3646.25.6.513.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and Stephenson D. B. , 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. Wiley, 240 pp.

  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487–503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., Bauer P. , Turk J. , Huffman G. J. , Joyce R. , Hsu K.-L. , and Braithwaite D. , 2012: Intercomparison of high-resolution precipitation products over northwest Europe. Bull. Amer. Meteor. Soc., 13, 67–83, doi:10.1175/JHM-D-11-042.1.

    • Search Google Scholar
    • Export Citation
  • Laroche, S., Gauthier P. , St-James J. , and Morneau J. , 1999: Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part II: The regional analysis. Atmos.–Ocean, 37, 281–307, doi:10.1080/07055900.1999.9649630.

    • Search Google Scholar
    • Export Citation
  • Lu, C., Yuan H. , Tollerud E. I. , and Wang N. , 2010: Scale-dependent uncertainties in global QPFs and QPEs from NWP model and satellite fields. J. Hydrometeor., 11, 139–150, doi:10.1175/2009JHM1164.1.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., Brasnett B. , and Gagnon S. , 2007: A Canadian Precipitation Analysis (CaPA) project: Description and preliminary results. Atmos.–Ocean, 45, 1–17, doi:10.3137/ao.450101.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 2006: The 15-km version of the Canadian regional forecast system. Atmos.–Ocean, 44, 133–149, doi:10.3137/ao.440202.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., Brown B. G. , and Chen Y.-S. , 1989: Diagnostic verification of temperature forecasts. Wea. Forecasting, 4, 485–501, doi:10.1175/1520-0434(1989)004<0485:DVOTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NIDIS, 2015: U.S. Drought Portal. NOAA, accessed 16 July 2015. [Available online at http://www.drought.gov.]

  • Politis, N. D., and Romano J. P. , 1994: The stationary bootstrap. J. Amer. Stat. Assoc., 89, 1303–1313, doi:10.1080/01621459.1994.10476870.

    • Search Google Scholar
    • Export Citation
  • Rowe, J. S., and Sheard J. S. , 1981: Ecological land classification: A survey approach. Environ. Manage., 5, 451–464, doi:10.1007/BF01866822.

    • Search Google Scholar
    • Export Citation
  • Schirmer, M., and Jamieson B. , 2015: Verification of analysed and forecasted winter precipitation in complex terrain. Cryosphere, 9, 587–601, doi:10.5194/tc-9-587-2015.

    • Search Google Scholar
    • Export Citation
  • Seo, D. J., and Breidenbach J. P. , 2002: Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements. J. Hydrometeor., 3, 93–111, doi:10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., Ed., 1989: Precipitation measurement. Proc. Int. Workshop on Precipitation Measurement, WMO/TD 32, St. Moritz, Switzerland, ETH Zurich, 589 pp.

  • Shrestha, D. L., Robertson D. E. , Wang Q. J. , Pagano T. C. , and Hapuarachchi H. A. P. , 2013: Evaluation of numerical weather prediction model precipitation forecasts for short-term streamflow forecasting purpose. Hydrol. Earth Syst. Sci., 17, 1913–1931, doi:10.5194/hess-17-1913-2013.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. , Gao G. , Gupta H. , Imama B. , and Braitwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 2035–2046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stanski, H. R., Wilson L. J. , and Burrows W. R. , 1989: Survey of common verification methods in meteorology. World Weather Watch Tech. Rep. 8, WMO/TD 358, 114 pp.

  • Tustison, B., Harris D. , and Foufoula-Georgiou E. , 2001: Scale issues in verification of precipitation forecasts. J. Geophys. Res., 106, 11 775–11 784, doi:10.1029/2001JD900066.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P., and Fillion L. , 2012: Le Futur Système Régional de Prévisions Déterministe SRPD 3.0.0 (10km-4DVAR). Séminaire Recherche en Prévision Numérique, Dorval, QC, Canada, Environment Canada, 88 pp. [Available online at http://collaboration.cmc.ec.gc.ca/science/rpn/SEM/dossiers/2012/seminaires/2012-03-23/Seminar_2012-03-23_Paul-Vaillancourt.pdf.]

  • Wiken, E. B., 1986: Terrestrial EcoZones of Canada. Ecological Land Classification Series, Vol. 19, Lands Directorate, Environment Canada, 26 pp.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor., 34, 1143–1160, doi:10.1175/1520-0450(1995)034<1143:AIOGOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Xiong A.-Y. , 2011: A conceptual model for constructing high-resolution gauge-satellite merged precipitation analysis. J. Geophys. Res., 116, D21106, doi:10.1029/2011JD016118.

    • Search Google Scholar
    • Export Citation
  • Yang, D. Q., and Woo M. K. , 1999: Representativeness of local snow data for large scale hydrologic investigations. Hydrol. Processes, 13, 1977–1988, doi:10.1002/(SICI)1099-1085(199909)13:12/13<1977::AID-HYP894>3.0.CO;2-B.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1397 296 40
PDF Downloads 997 150 13