• Adamowski, J., , and Sun K. , 2010: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol., 390, 8591, doi:10.1016/j.jhydrol.2010.06.033.

    • Search Google Scholar
    • Export Citation
  • Ajami, N. K., , Duan Q. , , and Sorooshian S. , 2007: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res., 43, W01403, doi:10.1029/2005WR004745.

    • Search Google Scholar
    • Export Citation
  • Alexandersson, H., 1986: A homogeneity test applied to precipitation data. J. Climatol., 6, 661675, doi:10.1002/joc.3370060607.

  • Azamathulla, H. M., , and Wu F. C. , 2011: Support vector machine approach for longitudinal dispersion coefficients in natural streams. Appl. Soft Comput., 11, 29022905, doi:10.1016/j.asoc.2010.11.026.

    • Search Google Scholar
    • Export Citation
  • Bartels, R., 1982: The rank version of von Neumann’s ratio test for randomness. J. Amer. Stat. Assoc., 77, 4046, doi:10.1080/01621459.1982.10477764.

    • Search Google Scholar
    • Export Citation
  • Bennett, N. D., and et al. , 2013: Characterising performance of environmental models. Environ. Modell. Software, 40, 120, doi:10.1016/j.envsoft.2012.09.011.

    • Search Google Scholar
    • Export Citation
  • Bray, M., , and Han D. , 2004: Identification of support vector machines for runoff modeling. J. Hydroinform., 6, 265280.

  • Chang, C. C., , and Lin C. J. , 2001: LIBSVM: A library for support vector machines. Accessed 10 January 2015. [Available online at http://www.csie.ntu.edu.tw/~cjlin/libsvm/.]

  • Chen, Y. D., , Zhang Q. , , Lu X. , , Zhang S. R. , , and Zhang Z. X. , 2011: Precipitation variability (1956–2002) in the Dongjiang River (Zhujiang River basin, China) and associated large-scale circulation. Quat. Int., 244, 130137, doi:10.1016/j.quaint.2010.08.013.

    • Search Google Scholar
    • Export Citation
  • Chou, C. M., 2007: Applying multi-resolution analysis to differential hydrological grey models with dual series. J. Hydrol., 332, 174186, doi:10.1016/j.jhydrol.2006.06.031.

    • Search Google Scholar
    • Export Citation
  • Daubechies, I., 1990: The wavelet transform, time–frequency localization and signal analysis. IEEE Trans. Inf. Theory, 36, 9611005, doi:10.1109/18.57199.

    • Search Google Scholar
    • Export Citation
  • Dawson, C. W., , Abrahart R. , , and See L. , 2007: HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Modell. Software, 22, 10341052, doi:10.1016/j.envsoft.2006.06.008.

    • Search Google Scholar
    • Export Citation
  • de Artigas, M. Z., , Elias A. G. , , and de Campra P. F. , 2006: Discrete wavelet analysis to assess long-term trends in geomagnetic activity. Phys. Chem. Earth, 31, 7780, doi:10.1016/j.pce.2005.03.009.

    • Search Google Scholar
    • Export Citation
  • Dhanya, C. T., , and Kumar D. N. , 2011: Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach. Water Resour. Res., 47, W06507, doi:10.1029/2010WR010173.

    • Search Google Scholar
    • Export Citation
  • Dibike, Y. B., , Velickov S. , , Solomatine D. P. , , and Abbott M. B. , 2001: Model induction with support vector machines: introduction and applications. J. Comput. Civil Eng., 15, 208–216, doi:10.1061/(ASCE)0887-3801(2001)15:3(208).

    • Search Google Scholar
    • Export Citation
  • Drucker, H., , Burges C. J. C. , , Kaufman L. , , Smola A. , , and Vapnik V. , 1997: Support vector regression machines. Advances in Neural Information Processing Systems 9, M. Mozer, M. I. Jordan, and T. Petsche, Eds., MIT Press, 281–287.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., , Sorooshian S. , , and Gupta V. K. , 1992: Effective and efficient global optimization for conceptual rainfall–runoff models. Water Resour. Res., 28, 265284, doi:10.1029/91WR02985.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., , Ajami N. K. , , Gao X. , , and Sorooshian S. , 2007: Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour., 30, 13711386, doi:10.1016/j.advwatres.2006.11.014.

    • Search Google Scholar
    • Export Citation
  • Franz, K. J., , Butcher P. , , and Ajami N. K. , 2010: Addressing snow model uncertainty for hydrologic prediction. Adv. Water Resour., 33, 820832, doi:10.1016/j.advwatres.2010.05.004.

    • Search Google Scholar
    • Export Citation
  • Granger, C. W. J., , and Ramanathan R. , 1984: Improved methods of combining forecast accuracy. J. Forecasting, 3, 197204, doi:10.1002/for.3980030207.

    • Search Google Scholar
    • Export Citation
  • Hoeting, J. A., , Madigan D. , , Raftery A. E. , , and Volinsky C. T. , 1999: Bayesian model averaging: A tutorial. Stat. Sci., 14, 382417, doi:10.1214/ss/1009212519.

    • Search Google Scholar
    • Export Citation
  • Hsu, C. W., , Chang C. C. , , and Lin C. J. , 2010: A practical guide to support vector classification. Accessed 10 January 2015. [Available online at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.]

  • Hsu, K., , Moradkhani H. , , and Sorooshian S. , 2009: A sequential Bayesian approach for hydrologic model selection and prediction. Water Resour. Res., 45, W00B12, doi:10.1029/2008WR006824.

    • Search Google Scholar
    • Export Citation
  • JAMSTEC, 2012: Indian Ocean dipole mode dataset. Accessed 30 June 2015. [Available online at http://www.jamstec.go.jp/frcgc/research/d1/iod/.]

  • Jang, J. S. R., 1993: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern., 23, 665685, doi:10.1109/21.256541.

    • Search Google Scholar
    • Export Citation
  • Kao, L. J., , Chiu C. C. , , Lu C. J. , , and Yang J. L. , 2013: Integration of nonlinear independent component analysis and support vector regression for stock price forecasting. Neurocomputing, 99, 534542, doi:10.1016/j.neucom.2012.06.037.

    • Search Google Scholar
    • Export Citation
  • Kim, G., , and Barros A. P. , 2001: Quantitative flood forecasting using multisensor data and neural networks. J. Hydrol., 246, 4562, doi:10.1016/S0022-1694(01)00353-5.

    • Search Google Scholar
    • Export Citation
  • Kisi, O., , and Cimen M. , 2011: A wavelet–support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol., 399, 132140, doi:10.1016/j.jhydrol.2010.12.041.

    • Search Google Scholar
    • Export Citation
  • Labat, D., , Ababou R. , , and Mangin A. , 2000: Rainfall–runoff relationships for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol., 238, 149178, doi:10.1016/S0022-1694(00)00322-X.

    • Search Google Scholar
    • Export Citation
  • Lin, J., , and Smith M. J. T. , 2008: New perspectives and improvements on the symmetric extension filter bank for subband/wavelet image compression. IEEE Trans. Image Process., 7, 177180, doi:10.1109/TIP.2007.914223.

    • Search Google Scholar
    • Export Citation
  • Lin, K., , He Y. , , Lei X. , , and Chen X. , 2011: Climate change and its impact on runoff during 1956–2009 in Dongjiang basin (in Chinese). Ecol. Environ. Sci., 20 (12), 17831787.

    • Search Google Scholar
    • Export Citation
  • Liong, S., , and Sivapragasam C. , 2002: Flood stage forecasting with support vector machines. J. Amer. Water Resour. Assoc., 38, 173186, doi:10.1111/j.1752-1688.2002.tb01544.x.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , and Gupta H. V. , 2007: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res., 43, W07401, doi:10.1029/2006WR005756.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , Brown J. , , Demargne J. , , and Seo D.-J. , 2011: Assessing timing errors in hydrologic predictions using cross wavelet analysis. J. Hydrol., 397, 210224, doi:10.1016/j.jhydrol.2010.11.040.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and et al. , 2012: Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities. Hydrol. Earth Syst. Sci., 16, 38633887, doi:10.5194/hess-16-3863-2012.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , Zhou P. , , Chen G. , , and Guo L. , 2014: Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting. J. Hydrol., 519, 2822–2831, doi:10.1016/j.jhydrol.2014.06.050.

    • Search Google Scholar
    • Export Citation
  • Luo, L., , and Wood E. F. , 2008: Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the eastern United States. J. Hydrometeor., 9, 866884, doi:10.1175/2008JHM980.1.

    • Search Google Scholar
    • Export Citation
  • Maheswaran, R., , and Khosa R. , 2012a: Wavelet–Volterra coupled model for monthly stream flow forecasting. J. Hydrol., 450–451, 320335, doi:10.1016/j.jhydrol.2012.04.017.

    • Search Google Scholar
    • Export Citation
  • Maheswaran, R., , and Khosa R. , 2012b: Comparative study of different wavelets for hydrologic forecasting. Comput. Geosci., 46, 284295, doi:10.1016/j.cageo.2011.12.015.

    • Search Google Scholar
    • Export Citation
  • Mallat, S. G., 1989: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11, 674693, doi:10.1109/34.192463.

    • Search Google Scholar
    • Export Citation
  • McKerchar, A. I., , and Delleur J. W. , 1974: Application of seasonal parametric linear stochastic models to monthly flow data. Water Resour. Res., 10, 246255, doi:10.1029/WR010i002p00246.

    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., , Hsu K. , , Gupta H. V. , , and Sorooshian S. , 2004: Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol., 295, 246262, doi:10.1016/j.jhydrol.2004.03.027.

    • Search Google Scholar
    • Export Citation
  • Nalley, D., , Adamowski J. , , and Khalil B. , 2012: Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J. Hydrol., 475, 204228, doi:10.1016/j.jhydrol.2012.09.049.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., , and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Neuman, S. P., , and Wierenga P. J. , 2003: A comprehensive strategy of hydrologic modeling and uncertainty analysis for nuclear facilities and sites. NUREG/CR-6805, U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research, 311 pp.

  • Niu, J., 2013: Precipitation in the Pearl River basin, south China: Scaling, regional patterns, and influence of large-scale climate anomalies. Stochastic Environ. Res. Risk Assess., 27, 1253–1268, doi:10.1007/s00477-012-0661-2.

  • NOAA, 2015: MEI index dataset. NOAA/ESRL/PSD, accessed 30 June 2015. [Available online at http://www.esrl.noaa.gov/psd/enso/mei/table.html.]

  • Nourani, V., , Alami M. T. , , and Aminfar M. H. , 2009a: A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell., 22, 466472, doi:10.1016/j.engappai.2008.09.003.

    • Search Google Scholar
    • Export Citation
  • Nourani, V., , Komasi M. , , and Mano A. , 2009b: A multivariate ANN–wavelet approach for rainfall–runoff modeling. Water Resour. Manage., 23, 28772894, doi:10.1007/s11269-009-9414-5.

    • Search Google Scholar
    • Export Citation
  • Nourani, V., , Kisi O. , , and Komasi M. , 2011: Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. J. Hydrol., 402, 4159, doi:10.1016/j.jhydrol.2011.03.002.

    • Search Google Scholar
    • Export Citation
  • Nourani, V., , Hosseini Baghanam A. , , Adamowski J. , , and Gebremicheal M. , 2013: Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. J. Hydrol., 476, 228243, doi:10.1016/j.jhydrol.2012.10.054.

    • Search Google Scholar
    • Export Citation
  • Nourani, V., , Hosseini Baghanam A. , , Adamowski J. , , and Kisi O. , 2014: Applications of hybrid wavelet–artificial intelligence models in hydrology: A review. J. Hydrol., 514, 358377, doi:10.1016/j.jhydrol.2014.03.057.

    • Search Google Scholar
    • Export Citation
  • Parrish, M. A., , Moradkhani H. , , and DeChant C. M. , 2012: Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation. Water Resour. Res., 48, W03519, doi:10.1029/2011WR011116.

    • Search Google Scholar
    • Export Citation
  • Partal, T., , and Küçük M. , 2006: Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey). Phys. Chem. Earth, 31, 11891200, doi:10.1016/j.pce.2006.04.043.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, P., , Wang Q. J. , , and Robertson D. E. , 2013: The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia. Water Resour. Res., 49, 66716687, doi:10.1002/wrcr.20449.

    • Search Google Scholar
    • Export Citation
  • Quiroz, R., , Yarlequé C. , , Posadas A. , , Mares V. , , and Immerzeel W. W. , 2011: Improving daily rainfall estimation from NDVI using a wavelet transform. Environ. Modell. Software, 26, 201209, doi:10.1016/j.envsoft.2010.07.006.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., , Gneiting T. , , Balabdaoui F. , , and Polakowski M. , 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Rathinasamy, M., , Adamowski J. , , and Khosa R. , 2013: Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra non-linear method. J. Hydrol., 507, 186200, doi:10.1016/j.jhydrol.2013.09.025.

    • Search Google Scholar
    • Export Citation
  • Rojas, R., , Feyen L. , , and Dassargues A. , 2008: Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resour. Res., 44, W12418, doi:10.1029/2008WR006908.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., , and Yamagata T. , 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151169, doi:10.3354/cr025151.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., , Goswami B. N. , , Vinayachandran P. N. , , and Yamagata T. , 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Sang, Y. F., , Wang Z. , , and Liu C. , 2013: Discrete wavelet-based trend identification in hydrologic time series. Hydrol. Processes, 27, 20212031, doi:10.1002/hyp.9356.

    • Search Google Scholar
    • Export Citation
  • Sloughter, J. M., , Raftery A. E. , , Gneiting T. , , and Fraley C. , 2007: Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Wea. Rev., 135, 32093220, doi:10.1175/MWR3441.1.

    • Search Google Scholar
    • Export Citation
  • Su, H., , Liu Q. , , and Li J. , 2011: Alleviating border effects in wavelet transforms for nonlinear time-varying signal analysis. Adv. Electr. Comput. Eng., 11, 55–60, doi:10.4316/aece.2011.03009.

    • Search Google Scholar
    • Export Citation
  • Tiwari, M. K., , and Chatterjee C. , 2010: Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach. J. Hydrol., 394, 458470, doi:10.1016/j.jhydrol.2010.10.001.

    • Search Google Scholar
    • Export Citation
  • Vapnik, V., 2000: The Nature of Statistical Learning Theory. 2nd ed. Springer, 314 pp.

  • Vapnik, V., , Golwich S. , , and Smola A. J. , 1997: Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 9, M. Mozer, M. I. Jordan, and T. Petsche, Eds., MIT Press, 281–287.

  • Vogel, R. M., , and Fennessey N. M. , 1995: Flow duration curves II: A review of applications in water resources planning. J. Amer. Water Res. Assoc., 31, 10291039, doi:10.1111/j.1752-1688.1995.tb03419.x.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J., , and Robinson B. , 2007: Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging. Water Resour. Res., 43, W01411, doi:10.1029/2005WR004838.

  • Wang, Q. J., , and Robertson D. E. , 2011: Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences. Water Resour. Res., 47, W02546, doi:10.1029/2010WR009333.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and Ding J. , 2003: Wavelet network model and its application to the prediction of the hydrology. Nat. Sci., 1 (1), 6771.

  • Wang, W.-C., , Chau K. W. , , Cheng C. T. , , and Qiu L. , 2009: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol., 374, 294306, doi:10.1016/j.jhydrol.2009.06.019.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , Chen X. , , and Yan T. , 2010: Runoff variation and its impacting factors in the Dongjiang River basin during 1956–2005 (in Chinese with English abstract). J. Nat. Resour., 25 (8), 13651374.

    • Search Google Scholar
    • Export Citation
  • Wei, C., , and Roan J. , 2012: Retrievals for the rainfall rate over land using Special Sensor Microwave Imager data during tropical cyclones: Comparisons of scattering index, regression, and support vector regression. J. Hydrometeor., 13, 15671578, doi:10.1175/JHM-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Wöhling, T., , and Vrugt J. A. , 2008: Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models. Water Resour. Res., 44, W12432, doi:10.1029/2008WR007154.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., , and Timlin M. S. , 2011: El Niño–Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 10741087, doi:10.1002/joc.2336.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., , and Chen J. , 2013: Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in south China. Ecol. Indic., 32, 294304, doi:10.1016/j.ecolind.2013.04.002.

    • Search Google Scholar
    • Export Citation
  • Yu, P. S., , Chen S. T. , , and Chang I. F. , 2006: Support vector regression for real-time flood stage forecasting. J. Hydrol., 328, 704716, doi:10.1016/j.jhydrol.2006.01.021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 15
PDF Downloads 71 71 4

A Probabilistic Wavelet–Support Vector Regression Model for Streamflow Forecasting with Rainfall and Climate Information Input

View More View Less
  • 1 Institute of Geography, Heidelberg University, Heidelberg, Germany
  • | 2 Department of Forest Ecology, Guangdong Academy of Forestry, Guangzhou, China
  • | 3 College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, China, and Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana
© Get Permissions
Restricted access

Abstract

It is essential to explore reliable streamflow forecasting techniques for water resources management. In this study, a Bayesian wavelet–support vector regression model (BWS model) is developed for one- and multistep-ahead streamflow forecasting using local meteohydrological observations and climate indices including El Niño–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) as potential predictors. To accomplish this, a two-step strategy is applied. In the first step, the discrete wavelet transform is coupled with a support vector regression model for streamflow prediction. The three key factors of mother wavelets, decomposition levels, and edge effects are considered in the wavelet decomposition phase when using the hybrid wavelet–support vector regression model (WS model). Different combinations of these factors form a variety of WS models with corresponding forecasts. The second step combines multiple candidate WS models with “good” performance via Bayesian model averaging. This integrates the predictive strengths of different candidate WS models, giving a realistic assessment of the predictive uncertainty. The new ensemble model is used to forecast daily and monthly streamflows at two sites in Dongjiang basin, southern China. The results show that the proposed BWS model consistently generates more reliable predictions for daily (lead times of 1–7 days) and monthly (lead times of 1–3 months) forecasts as compared with the best single-member WS models and the adaptive neuro-fuzzy inference system (ANFIS). Furthermore, the proposed BWS model provides detailed information about the predictive uncertainty.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0210.s1.

Current affiliation: Guangdong Provincial Key Laboratory of Biocontrol for the Forest Disease and Pest, Guangdong Academy of Forestry, Guangzhou, China.

Corresponding author address: P. Zhou, Guangdong Provincial Key Laboratory of Biocontrol for the Forest Disease and Pest, Guangdong Academy of Forestry, Guangzhou 510520, China. E-mail: zhoupinger@gmail.com

Abstract

It is essential to explore reliable streamflow forecasting techniques for water resources management. In this study, a Bayesian wavelet–support vector regression model (BWS model) is developed for one- and multistep-ahead streamflow forecasting using local meteohydrological observations and climate indices including El Niño–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) as potential predictors. To accomplish this, a two-step strategy is applied. In the first step, the discrete wavelet transform is coupled with a support vector regression model for streamflow prediction. The three key factors of mother wavelets, decomposition levels, and edge effects are considered in the wavelet decomposition phase when using the hybrid wavelet–support vector regression model (WS model). Different combinations of these factors form a variety of WS models with corresponding forecasts. The second step combines multiple candidate WS models with “good” performance via Bayesian model averaging. This integrates the predictive strengths of different candidate WS models, giving a realistic assessment of the predictive uncertainty. The new ensemble model is used to forecast daily and monthly streamflows at two sites in Dongjiang basin, southern China. The results show that the proposed BWS model consistently generates more reliable predictions for daily (lead times of 1–7 days) and monthly (lead times of 1–3 months) forecasts as compared with the best single-member WS models and the adaptive neuro-fuzzy inference system (ANFIS). Furthermore, the proposed BWS model provides detailed information about the predictive uncertainty.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0210.s1.

Current affiliation: Guangdong Provincial Key Laboratory of Biocontrol for the Forest Disease and Pest, Guangdong Academy of Forestry, Guangzhou, China.

Corresponding author address: P. Zhou, Guangdong Provincial Key Laboratory of Biocontrol for the Forest Disease and Pest, Guangdong Academy of Forestry, Guangzhou 510520, China. E-mail: zhoupinger@gmail.com

Supplementary Materials

    • Supplemental Materials (DOC 259.50 KB)
Save