Improved Simulation of Peak Flows under Climate Change: Postprocessing or Composite Objective Calibration?

Xujie Zhang Institute of Hydrology and Water Resources, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China, and Department of Water Engineering and Management, Faculty of Engineering Technology, University of Twente, Enschede, Netherlands

Search for other papers by Xujie Zhang in
Current site
Google Scholar
PubMed
Close
,
Martijn J. Booij Department of Water Engineering and Management, Faculty of Engineering Technology, University of Twente, Enschede, Netherlands

Search for other papers by Martijn J. Booij in
Current site
Google Scholar
PubMed
Close
, and
Yue-Ping Xu Institute of Hydrology and Water Resources, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China

Search for other papers by Yue-Ping Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Climate change is expected to have large impacts on peak flows. However, there may be bias in the simulation of peak flows by hydrological models. This study aims to improve the simulation of peak flows under climate change in Lanjiang catchment, east China, by comparing two approaches: postprocessing of peak flows and composite objective calibration. Two hydrological models [Soil and Water Assessment Tool (SWAT) and modèle du Génie Rural à 4 paramètres Journalier (GR4J)] are employed to simulate the daily flows, and the peaks-over-threshold method is used to extract peak flows from the simulated daily flows. Three postprocessing methods, namely, the quantile mapping method and two generalized linear models, are set up to correct the biases in the simulated raw peak flows. A composite objective calibration of the GR4J model by taking the peak flows into account in the calibration process is also carried out. The regional climate model Providing Regional Climates for Impacts Studies (PRECIS) with boundary forcing from two GCMs (HadCM3 and ECHAM5) under greenhouse gas emission scenario A1B is applied to produce the climate data for the baseline period and the future period 2011–40. The results show that the postprocessing methods, particularly quantile mapping method, can correct the biases in the raw peak flows effectively. The composite objective calibration also resulted in a good simulation performance of peak flows. The final estimated peak flows in the future period show an obvious increase compared with those in the baseline period, indicating there will probably be more frequent floods in Lanjiang catchment in the future.

Corresponding author address: Dr. Yue-Ping Xu, Institute of Hydrology and Water Resources, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, China. E-mail: yuepingxu@zju.edu.cn

Abstract

Climate change is expected to have large impacts on peak flows. However, there may be bias in the simulation of peak flows by hydrological models. This study aims to improve the simulation of peak flows under climate change in Lanjiang catchment, east China, by comparing two approaches: postprocessing of peak flows and composite objective calibration. Two hydrological models [Soil and Water Assessment Tool (SWAT) and modèle du Génie Rural à 4 paramètres Journalier (GR4J)] are employed to simulate the daily flows, and the peaks-over-threshold method is used to extract peak flows from the simulated daily flows. Three postprocessing methods, namely, the quantile mapping method and two generalized linear models, are set up to correct the biases in the simulated raw peak flows. A composite objective calibration of the GR4J model by taking the peak flows into account in the calibration process is also carried out. The regional climate model Providing Regional Climates for Impacts Studies (PRECIS) with boundary forcing from two GCMs (HadCM3 and ECHAM5) under greenhouse gas emission scenario A1B is applied to produce the climate data for the baseline period and the future period 2011–40. The results show that the postprocessing methods, particularly quantile mapping method, can correct the biases in the raw peak flows effectively. The composite objective calibration also resulted in a good simulation performance of peak flows. The final estimated peak flows in the future period show an obvious increase compared with those in the baseline period, indicating there will probably be more frequent floods in Lanjiang catchment in the future.

Corresponding author address: Dr. Yue-Ping Xu, Institute of Hydrology and Water Resources, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, China. E-mail: yuepingxu@zju.edu.cn
Save
  • Abbaspour, K. C., Johnson C. A. , and Van Genuchten M. T. , 2004: Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J., 3, 13401352, doi:10.2113/3.4.1340.

    • Search Google Scholar
    • Export Citation
  • Abbaspour, K. C., Yang J. , Maximov I. , Siber R. , Bogner K. , Mieleitner J. , Zobrist J. , and Srinivasan R. , 2007: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol., 333, 413430, doi:10.1016/j.jhydrol.2006.09.014.

    • Search Google Scholar
    • Export Citation
  • Akhtar, M., Ahmad N. , and Booij M. J. , 2008: The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J. Hydrol., 355, 148163, doi:10.1016/j.jhydrol.2008.03.015.

    • Search Google Scholar
    • Export Citation
  • Allen, R. G., Pereira L. S. , Raes D. , and Smith M. , 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Arnold, J. G., Srinivasan R. , Muttiah R. S. , and Williams J. R. , 1998: Large area hydrologic modeling and assessment. Part I: Model development. J. Amer. Water Resour. Assoc., 34, 7389, doi:10.1111/j.1752-1688.1998.tb05961.x.

    • Search Google Scholar
    • Export Citation
  • Ault, T. R., Cole J. E. , Overpeck J. T. , Pederson G. T. , and Meko D. M. , 2014: Assessing the risk of persistent drought using climate model simulations and paleoclimate data. J. Climate, 27, 75297549, doi:10.1175/JCLI-D-12-00282.1.

    • Search Google Scholar
    • Export Citation
  • Booij, M. J., 2005: Impact of climate change on river flooding assessed with different spatial model resolutions. J. Hydrol., 303, 176198, doi:10.1016/j.jhydrol.2004.07.013.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., Naud C. M. , and Del Genio A. D. , 2013: Diagnosing warm frontal cloud formation in a GCM: A novel approach using conditional subsetting. J. Climate, 26, 58275845, doi:10.1175/JCLI-D-12-00637.1.

    • Search Google Scholar
    • Export Citation
  • Brown, J. D., and Seo D. , 2013: Evaluation of a nonparametric post-processor for bias correction and uncertainty estimation of hydrologic predictions. Hydrol. Processes, 27, 83105, doi:10.1002/hyp.9263.

    • Search Google Scholar
    • Export Citation
  • Chandler, R. E., and Wheater H. S. , 2002: Analysis of rainfall variability using generalized linear models: A case study from the west of Ireland. Water Resour. Res., 38, 1192, doi:10.1029/2001WR000906.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Brissette F. P. , Poulin A. , and Leconte R. , 2011: Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res., 47, W12509, doi:10.1029/2011WR010602.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Brissette F. P. , Chaumont D. , and Braun M. , 2013: Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J. Hydrol., 479, 200214, doi:10.1016/j.jhydrol.2012.11.062.

    • Search Google Scholar
    • Export Citation
  • Chen, X., Yang T. , Wang X. , Xu C. , and Yu Z. , 2013: Uncertainty intercomparison of different hydrological models in simulating extreme flows. Water Resour. Manage., 27, 13931409, doi:10.1007/s11269-012-0244-5.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. W., Ruiz J. L. , and Sirvent I. , 2007: Choosing weights from alternative optimal solutions of dual multiplier models in DEA. Eur. J. Oper. Res., 180, 443458, doi:10.1016/j.ejor.2006.02.037.

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., Nowicki S. M. J. , Zhao B. , and Suarez M. J. , 2014: Evaluation of the surface representation of the Greenland Ice Sheet in a general circulation model. J. Climate, 27, 48354856, doi:10.1175/JCLI-D-13-00635.1.

    • Search Google Scholar
    • Export Citation
  • Demirel, M. C., Booij M. J. , and Hoekstra A. Y. , 2013: Effect of different uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological models. Water Resour. Res., 49, 40354053, doi:10.1002/wrcr.20294.

    • Search Google Scholar
    • Export Citation
  • Dobler, C., Bürger G. , and Stötter J. , 2012: Assessment of climate change impacts on flood hazard potential in the Alpine Lech watershed. J. Hydrol., 460–461, 2939, doi:10.1016/j.jhydrol.2012.06.027.

    • Search Google Scholar
    • Export Citation
  • DWRZJ, 2013: “Fitow” seriously affected the province: 17.395 billion in direct economic losses. Accessed 3 December 2013. [Available online at http://slt.zj.gov.cn/pages/document/106/document_889.htm.]

  • Fan, J., Tian F. , Yang Y. , Han S. , and Qiu G. , 2010: Quantifying the magnitude of the impact of climate change and human activity on runoff decline in Mian River basin, China. Water Sci. Technol., 62, 783791, doi:10.2166/wst.2010.294.

    • Search Google Scholar
    • Export Citation
  • Faramarzi, M., Abbaspour K. C. , Schulin R. , and Yang H. , 2009: Modelling blue and green water resources availability in Iran. Hydrol. Processes, 23, 486501, doi:10.1002/hyp.7160.

    • Search Google Scholar
    • Export Citation
  • Feddersen, H., Navarra A. , and Ward M. N. , 1999: Reduction of model systematic error by statistical correction for dynamical seasonal predictions. J. Climate, 12, 19741989, doi:10.1175/1520-0442(1999)012<1974:ROMSEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, C. B., and Coauthors, Eds., 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp.

  • Gordon, C., Cooper C. , Senior C. A. , Banks H. , Gregory J. M. , Johns T. C. , Mitchell J. F. B. , and Wood R. A. , 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre Coupled Model without flux adjustments. Climate Dyn., 16, 147168, doi:10.1007/s003820050010.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., Bremnes J. B. , Haugen J. E. , and Engen-Skaugen T. , 2012: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci., 16, 33833390, doi:10.5194/hess-16-3383-2012.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., Bradley A. A. , and Schwartz S. S. , 2007: Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrol. Earth Syst. Sci., 11, 939950, doi:10.5194/hess-11-939-2007.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., van Beek L. P. , and Bierkens M. F. , 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, doi:10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • Johnson, F., and Sharma A. , 2012: A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. Water Resour. Res., 48, W01504, doi:10.1029/2011WR010464.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., Smerdon J. E. , Seager R. , and González-Rouco J. F. , 2012: A Pacific centennial oscillation predicted by coupled GCMs. J. Climate, 25, 59435961, doi:10.1175/JCLI-D-11-00421.1.

    • Search Google Scholar
    • Export Citation
  • Kay, A. L., Davies H. N. , Bell V. A. , and Jones R. G. , 2009: Comparison of uncertainty sources for climate change impacts: flood frequency in England. Climatic Change, 92, 4163, doi:10.1007/s10584-008-9471-4.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Climate, 26, 46884709, doi:10.1175/JCLI-D-12-00392.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., Sheffield J. , and Wood E. F. , 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, doi:10.1029/2009JD012882.

    • Search Google Scholar
    • Export Citation
  • Liang, H., Zou G. , Wan A. T. K. , and Zhang X. , 2011: Optimal weight choice for frequentist model average estimators. J. Amer. Stat. Assoc., 106, 10531066, doi:10.1198/jasa.2011.tm09478.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Duan Q. , Zhao L. , Ye A. , Tao Y. , Miao C. , Mu X. , and Schaake J. C. , 2013: Evaluating the predictive skill of post-processed NCEP GFS ensemble precipitation forecasts in China’s Huai River basin. Hydrol. Processes, 27, 5774, doi:10.1002/hyp.9496.

    • Search Google Scholar
    • Export Citation
  • Madadgar, S., Moradkhani H. , and Garen D. , 2014: Towards improved post-processing of hydrologic forecast ensembles. Hydrol. Processes, 28, 104122, doi:10.1002/hyp.9562.

    • Search Google Scholar
    • Export Citation
  • Matonse, A. H., and Frei A. , 2013: A seasonal shift in the frequency of extreme hydrological events in southern New York State. J. Climate, 26, 95779593, doi:10.1175/JCLI-D-12-00810.1.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and Brier G. W. , 1968: Some Applications of Statistics to Meteorology. The Pennsylvania State University Press, 224 pp.

  • Parent, E., and Bernier J. , 2003: Bayesian POT modeling for historical data. J. Hydrol., 274, 95108, doi:10.1016/S0022-1694(02)00396-7.

    • Search Google Scholar
    • Export Citation
  • Perrin, C., Michel C. , and Andréassian V. , 2003: Improvement of a parsimonious model for streamflow simulation. J. Hydrol., 279, 275289, doi:10.1016/S0022-1694(03)00225-7.

    • Search Google Scholar
    • Export Citation
  • Planton, S., Déqué M. , Chauvin F. , and Terray L. , 2008: Expected impacts of climate change on extreme climate events. C. R. Geosci., 340, 564574, doi:10.1016/j.crte.2008.07.009.

    • Search Google Scholar
    • Export Citation
  • Safeeq, M., and Fares A. , 2012: Hydrologic response of a Hawaiian watershed to future climate change scenarios. Hydrol. Processes, 26, 27452764, doi:10.1002/hyp.8328.

    • Search Google Scholar
    • Export Citation
  • Schubert, S., Wang H. , and Suarez M. , 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, doi:10.1175/JCLI-D-10-05035.1.

    • Search Google Scholar
    • Export Citation
  • Schuol, J., Abbaspour K. C. , Yang H. , Srinivasan R. , and Zehnder A. J. B. , 2008: Modeling blue and green water availability in Africa. Water Resour. Res., 44, W07406, doi:10.1029/2007WR006609.

    • Search Google Scholar
    • Export Citation
  • Segond, M. L., Onof C. , and Wheater H. S. , 2006: Spatial–temporal disaggregation of daily rainfall from a generalized linear model. J. Hydrol., 331, 674689, doi:10.1016/j.jhydrol.2006.06.019.

    • Search Google Scholar
    • Export Citation
  • Setegn, S. G., Rayner D. , Melesse A. M. , Dargahi B. , and Srinivasan R. , 2011: Impact of climate change on the hydroclimatology of Lake Tana basin, Ethiopia. Water Resour. Res., 47, W04511, doi:10.1029/2010WR009248.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., Burridge D. M. , Jarraud M. , Girard C. , and Wergen W. , 1989: The ECMWF medium-range prediction models development of the numerical formulations and the impact of increased resolution. Meteor. Atmos. Phys., 40, 2860, doi:10.1007/BF01027467.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., Qin D. , Manning M. , Chen Z. , Marquis M. , Averyt K. , Tignor M. , and Miller H. L. Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Srinivasan, R., Ramanarayanan T. S. , Arnold J. G. , and Bednarz S. T. , 1998: Large area hydrologic modeling and assessment. Part II: Model application. J. Amer. Water Resour. Assoc., 34, 91101, doi:10.1111/j.1752-1688.1998.tb05962.x.

    • Search Google Scholar
    • Export Citation
  • Strauch, M., Bernhofer C. , Koide S. , Volk M. , Lorz C. , and Makeschin F. , 2012: Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J. Hydrol., 414–415, 413424, doi:10.1016/j.jhydrol.2011.11.014.

    • Search Google Scholar
    • Export Citation
  • Sunyer, M. A., and Coauthors, 2014: Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol. Earth Syst. Sci. Discuss., 11, 61676214, doi:10.5194/hessd-11-6167-2014.

    • Search Google Scholar
    • Export Citation
  • Taye, M. T., Ntegeka V. , Ogiramoi N. P. , and Willems P. , 2011: Assessment of climate change impact on hydrological extremes in two source regions of the Nile River basin. Hydrol. Earth Syst. Sci., 15, 209222, doi:10.5194/hess-15-209-2011.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., Gobiet A. , and Heinrich G. , 2012: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449468, doi:10.1007/s10584-011-0224-4.

    • Search Google Scholar
    • Export Citation
  • Thyer, M., Renard B. , Kavetski D. , Kuczera G. , Franks S. W. , and Srikanthan S. , 2009: Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis. Water Resour. Res., 45, W00B14, doi:10.1029/2008WR006825.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Xu Y. , and Zhang X. , 2013: Assessment of climate change impacts on river high flows through comparative use of GR4J, HBV and Xinanjiang models. Water Resour. Manage., 27, 28712888, doi:10.1007/s11269-013-0321-4.

    • Search Google Scholar
    • Export Citation
  • USWRC, 1976: Guidelines for determining flood flow frequency. U.S. Water Resources Council Bulletin 17, 196 pp.

  • Van Andel, S. J., Weerts A. , Schaake J. , and Bogner K. , 2013: Post-processing hydrological ensemble predictions intercomparison experiment. Hydrol. Processes, 27, 158161, doi:10.1002/hyp.9595.

    • Search Google Scholar
    • Export Citation
  • Verkade, J. S., Brown J. D. , Reggiani P. , and Weerts A. H. , 2013: Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. J. Hydrol., 501, 7391, doi:10.1016/j.jhydrol.2013.07.039.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Smith J. A. , Ntelekos A. A. , and Schwarz U. , 2011: Annual maximum and peaks-over-threshold analyses of daily rainfall accumulations for Austria. J. Geophys. Res., 116, D05103, doi:10.1029/2010JD015038.

    • Search Google Scholar
    • Export Citation
  • Woldemeskel, F. M., Sharma A. , Sivakumar B. , and Mehrotra R. , 2012: An error estimation method for precipitation and temperature projections for future climates. J. Geophys. Res., 117, D22104, doi:10.1029/2012JD018062.

    • Search Google Scholar
    • Export Citation
  • Xu, Y.-P., Zhang X. , and Tian Y. , 2012: Impact of climate change on 24-h design rainfall depth estimation in Qiantang River basin, East China. Hydrol. Processes, 26, 40674077, doi:10.1002/hyp.9210.

    • Search Google Scholar
    • Export Citation
  • Xu, Y.-P., Zhang X. , Ran Q. , and Tian Y. , 2013: Impact of climate change on hydrology of upper reaches of Qiantang River basin, East China. J. Hydrol., 483, 5160, doi:10.1016/j.jhydrol.2013.01.004.

    • Search Google Scholar
    • Export Citation
  • Xu, Y.-P., Pan S. , Fu G. , Tian Y. , and Zhang X. , 2014: Future potential evapotranspiration changes and contribution analysis in Zhejiang Province, East China. J. Geophys. Res. Atmos., 119, 21742192, doi:10.1002/2013JD021245.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Reichert P. , Abbaspour K. C. , Xia J. , and Yang H. , 2008: Comparing uncertainty analysis techniques for a SWAT application to the Chaohe basin in China. J. Hydrol., 358, 123, doi:10.1016/j.jhydrol.2008.05.012.

    • Search Google Scholar
    • Export Citation
  • Zhang, A., Zhang C. , Fu G. , Wang B. , Bao Z. , and Zheng H. , 2012: Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River basin, northeast China. Water Resour. Manage., 26, 21992217, doi:10.1007/s11269-012-0010-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Peng Y. , Chu J. , Shoemaker C. A. , and Zhang A. , 2012: Integrated hydrological modelling of small- and medium-sized water storages with application to the upper Fengman Reservoir basin of China. Hydrol. Earth Syst. Sci., 16, 40334047, doi:10.5194/hess-16-4033-2012.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Chu J. , and Fu G. , 2013: Sobol’s sensitivity analysis for a distributed hydrological model of Yichun River basin, China. J. Hydrol., 480, 5868, doi:10.1016/j.jhydrol.2012.12.005.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Srinivasan R. , Zhao K. , and Liew M. V. , 2009: Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrol. Processes, 23, 430441, doi:10.1002/hyp.7152.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Xu Y. , and Fu G. , 2014: Uncertainties in SWAT extreme flow simulation under climate change. J. Hydrol., 515, 205222, doi:10.1016/j.jhydrol.2014.04.064.

    • Search Google Scholar
    • Export Citation
  • Zhao, L., Duan Q. , Schaake J. , Ye A. , and Xia J. , 2011: A hydrologic post-processor for ensemble streamflow predictions. Adv. Geosci., 29, 5159, doi:10.5194/adgeo-29-51-2011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1107 505 148
PDF Downloads 595 116 6