• Adam, J. C., , Haddeland I. , , Su F. , , and Lettenmaier D. P. , 2007: Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei, and Ob’ rivers. J. Geophys. Res., 112, D24114, doi:10.1029/2007JD008525.

    • Search Google Scholar
    • Export Citation
  • Arnell, N. W., , and Gosling S. N. , 2013: The impacts of climate change on river flow regimes at the global scale. J. Hydrol., 486, 351364, doi:10.1016/j.jhydrol.2013.02.010.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., , Adam J. C. , , and Lettenmaier D. P. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001a: Random forests. Mach. Learn., 45, 532, doi:10.1023/A:1010933404324.

  • Breiman, L., 2001b: Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat. Sci., 16, 199231, doi:10.1214/ss/1009213726.

    • Search Google Scholar
    • Export Citation
  • Campbell, I., 2009: Introduction. The Mekong-Biophysical Environment of an International River Basin, I. C. Campbell, Ed., Academic Press, 1–11.

  • Cao, J. T., , Qin D. H. , , Kang E. S. , , and Li Y. Y. , 2006: River discharge changes in the Qinghai-Tibet Plateau. Chin. Sci. Bull., 51, 594600, doi:10.1007/s11434-006-0594-6.

    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., , Wood A. W. , , Voisin N. , , Lettenmaier D. P. , , and Palmer R. N. , 2004: The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62, 337363, doi:10.1023/B:CLIM.0000013684.13621.1f.

    • Search Google Scholar
    • Export Citation
  • CNMIC, 2005: Monthly Surface Climate Dataset in China (version 3.0), continuing from July 2005 (updated monthly). Chinese National Meteorological Information Centre, accessed 20 October 2011. [Available online at http://data.cma.gov.cn/data/.]

  • Cuo, L., , Zhang Y. , , Wang Q. , , Zhang L. , , Zhou B. , , Hao Z. , , and Su F. , 2012: Climate change on the northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanism. J. Climate, 26, 85109, doi:10.1175/JCLI-D-11-00738.1.

    • Search Google Scholar
    • Export Citation
  • Cuo, L., , Zhang Y. , , Zhu F. , , and Liang L. , 2014: Characteristics and changes of streamflow on the Tibetan Plateau: A review. J. Hydrol.: Reg. Stud., 2, 4968, doi:10.1016/j.ejrh.2014.08.004.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., , and Zhang L. , 2008: Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China (in Chinese). Chin. J. Atmos. Sci., 32, 794805.

    • Search Google Scholar
    • Export Citation
  • Duan, A., , Wu G. , , Zhang Q. , , and Liu Y. , 2006: New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chin. Sci. Bull., 51, 13961400, doi:10.1007/s11434-006-1396-6.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., , Baldwin M. E. , , and Schultz D. M. , 2006: Field significance revisited: Spatial bias errors in forecasts as applied to the Eta Model. Mon. Wea. Rev., 134, 519531, doi:10.1175/MWR3077.1.

    • Search Google Scholar
    • Export Citation
  • Fan, H., , and He D. , 2012: Regional climate and its change in the Nujiang River basin (in Chinese). Acta Geogr. Sin., 67, 621630.

  • Fan, H., , He D. , , and Wang H. , 2015: Environmental consequences of damming the mainstream Lancang–Mekong River: A review. Earth Sci. Rev., 146, 7791, doi:10.1016/j.earscirev.2015.03.007.

    • Search Google Scholar
    • Export Citation
  • Feng, S., , Tang M. , , and Wang D. , 1998: New evidence for the Qinghai-Xizang (Tibet) Plateau as a pilot region of climatic fluctuation in China. Chin. Sci. Bull., 43, 17451749, doi:10.1007/BF02883978.

    • Search Google Scholar
    • Export Citation
  • Gautam, M. R., , Timilsina G. R. , , and Acharya K. , 2013: Climate change in the Himalayas: Current state of knowledge. Policy Research Working Paper 6516, World Bank, 64 pp. [Available online at http://documents.worldbank.org/curated/en/2013/06/17935389/climate-change-himalayas-current-state-knowledge.]

  • Groisman, P. Ya., , Knight R. W. , , Karl T. R. , , Easterling D. R. , , Sun B. , , and Lawrimore J. H. , 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, doi:10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, D., , and Wang H. , 2012: The significant climate warming in the northern Tibetan Plateau and its possible causes. Int. J. Climatol., 32, 17751781, doi:10.1002/joc.2388.

    • Search Google Scholar
    • Export Citation
  • Guo, J., 1985: Hydrography of Western Sichuan and Northern Yunnan (in Chinese). Science Press, 158 pp.

  • Hamed, K. H., 2009: Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J. Hydrol., 368, 143155, doi:10.1016/j.jhydrol.2009.01.040.

    • Search Google Scholar
    • Export Citation
  • Hannah, D. M., , Brown L. E. , , Milner A. M. , , Gurnell A. M. , , McGregor G. R. , , Petts G. E. , , Smith B. P. G. , , and Snook D. L. , 2007: Integrating climate–hydrology–ecology for alpine river systems. Aquatic Conserv: Mar. Freshwater Ecosyst., 17, 636656, doi:10.1002/aqc.800.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., , Maskey S. , , Uhlenbrook S. , , and Zhao H. , 2011: Streamflow trends and climate linkages in the source region of the Yellow River, China. Hydrol. Processes, 25, 33993411, doi:10.1002/hyp.8069.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., , Maskey S. , , and Uhlenbrook S. , 2012: Trends in temperature and rainfall extremes in the Yellow River source region, China. Climatic Change, 110, 403429, doi:10.1007/s10584-011-0056-2.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, doi:10.1016/j.jhydrol.2005.07.003.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., , van Beek L. P. H. , , and Bierkens M. F. P. , 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, doi:10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., , van Beek L. P. H. , , Konz M. , , Shrestha A. , , and Bierkens M. , 2012: Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110, 721736, doi:10.1007/s10584-011-0143-4.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Karl, T. R., , and Riebsame W. E. , 1989: The impact of decadal fluctuations in mean precipitation and temperature on runoff: A sensitivity study over the United States. Climatic Change, 15, 423447, doi:10.1007/BF00240466.

    • Search Google Scholar
    • Export Citation
  • Labat, D., 2008: Wavelet analysis of the annual discharge records of the world’s largest rivers. Adv. Water Resour., 31, 109117, doi:10.1016/j.advwatres.2007.07.004.

    • Search Google Scholar
    • Export Citation
  • Labat, D., 2010: Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. J. Hydrol., 385, 269278, doi:10.1016/j.jhydrol.2010.02.029.

    • Search Google Scholar
    • Export Citation
  • Labat, D., , Goddéris Y. , , Probst J. L. , , and Guyot J. L. , 2004: Evidence for global runoff increase related to climate warming. Adv. Water Resour., 27, 631642, doi:10.1016/j.advwatres.2004.02.020.

    • Search Google Scholar
    • Export Citation
  • Labat, D., , Goddéris Y. , , Probst J. L. , , and Guyot J. L. , 2005: Reply to comment of Legates et al. Adv. Water Resour., 28, 13161319, doi:10.1016/j.advwatres.2005.04.007.

    • Search Google Scholar
    • Export Citation
  • Lai, Z., 1996: Impact of climate variation on the runoff of large rivers in the Tibetan Plateau (in Chinese). J. Glaciol. Geocryology, S1, 314–320.

  • Lan, Y., , Zhao G. , , Zhang Y. , , Wen J. , , Liu J. , , and Hu X. , 2010: Response of runoff in the source region of the Yellow River to climate warming. Quat. Int., 226, 6065, doi:10.1016/j.quaint.2010.03.006.

    • Search Google Scholar
    • Export Citation
  • Li, L., , Yang S. , , Wang Z. , , Zhu X. , , and Tang H. , 2010: Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res., 42, 449457, doi:10.1657/1938-4246-42.4.449.

    • Search Google Scholar
    • Export Citation
  • Liaw, A., , and Wiener M. , 2002: Classification and regression by randomForest. R News, Vol. 2/3, R Foundation, Vienna, Austria, 18–22. [Available online at https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf.]

  • Liu, X., , and Chen B. , 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., , and Chen W. Y. , 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahlman, J. D., 1997: Uncertainties in projections of human-caused climate warming. Science, 278, 14161417, doi:10.1126/science.278.5342.1416.

    • Search Google Scholar
    • Export Citation
  • Milliman, J. D., , Farnsworth K. L. , , Jones P. D. , , Xu K. H. , , and Smith L. C. , 2008: Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Global Planet. Change, 62, 187194, doi:10.1016/j.gloplacha.2008.03.001.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., , Dunne K. A. , , and Vecchia A. V. , 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350, doi:10.1038/nature04312.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , O’Donnell G. , , Hamlet A. , , and Lettenmaier D. , 2001: Hydrologic sensitivity of global rivers to climate change. Climatic Change, 50, 143175, doi:10.1023/A:1010616428763.

    • Search Google Scholar
    • Export Citation
  • Nohara, D., , Kitoh A. , , Hosaka M. , , and Oki T. , 2006: Impact of climate change on river discharge projected by multimodel ensemble. J. Hydrometeor., 7, 10761089, doi:10.1175/JHM531.1.

    • Search Google Scholar
    • Export Citation
  • Novotny, E. V., , and Stefan H. G. , 2007: Stream flow in Minnesota: Indicator of climate change. J. Hydrol., 334, 319333, doi:10.1016/j.jhydrol.2006.10.011.

    • Search Google Scholar
    • Export Citation
  • Oguntunde, P. G., , Abiodun B. J. , , and Lischeid G. , 2011: Rainfall trends in Nigeria, 1901–2000. J. Hydrol., 411, 207218, doi:10.1016/j.jhydrol.2011.09.037.

    • Search Google Scholar
    • Export Citation
  • Oki, T., , and Kanae S. , 2006: Global hydrological cycles and world water resources. Science, 313, 10681072, doi:10.1126/science.1128845.

    • Search Google Scholar
    • Export Citation
  • Pan, B., , and Li J. , 1996: Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change—III. The effects of the uplift of Qinghai-Tibetan Plateau on climatic changes (in Chinese). J. Lanzhou Univ., 32, 108115.

    • Search Google Scholar
    • Export Citation
  • Prasad, A. M., , Iverson L. R. , , and Liaw A. , 2006: Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9, 181199, doi:10.1007/s10021-005-0054-1.

    • Search Google Scholar
    • Export Citation
  • Qin, J., , Yang K. , , Liang S. , , and Guo X. , 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97, 321327, doi:10.1007/s10584-009-9733-9.

    • Search Google Scholar
    • Export Citation
  • Qin, N., , Chen X. , , Fu G. , , Zhai J. , , and Xue X. , 2010: Precipitation and temperature trends for the Southwest China: 1960–2007. Hydrol. Processes, 24, 37333744, doi:10.1002/hyp.7792.

    • Search Google Scholar
    • Export Citation
  • Qiu, J., 2008: China: The third pole. Nature, 454, 393396, doi:10.1038/454393a.

  • Rangwala, I., , and Miller J. , 2012: Climate change in mountains: A review of elevation-dependent warming and its possible causes. Climatic Change, 114, 527547, doi:10.1007/s10584-012-0419-3.

    • Search Google Scholar
    • Export Citation
  • Robinson, R. A. J., and et al. , 2007: The Irrawaddy River sediment flux to the Indian Ocean: The original nineteenth-century data revisited. J. Geol., 115, 629640, doi:10.1086/521607.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s Tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Theil, H., 1992: A rank-invariant method of linear and polynomial regression analysis. Henri Theil’s Contributions to Economics and Econometrics, B. Raj and J. Koerts, Eds., Springer, 345–381.

  • Verbesselt, J., , Hyndman R. , , Newnham G. , , and Culvenor D. , 2010: Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ., 114, 106115, doi:10.1016/j.rse.2009.08.014.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Bao Q. , , Hoskins B. , , Wu G. , , and Liu Y. , 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, doi:10.1029/2008GL034330.

    • Search Google Scholar
    • Export Citation
  • Xie, H., , and Zhu X. , 2012: Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970–2009). Hydrol. Processes, 27, 36853693, doi:10.1002/hyp.9487.

    • Search Google Scholar
    • Export Citation
  • Xu, K., , Milliman J. D. , , and Xu H. , 2010: Temporal trend of precipitation and runoff in major Chinese Rivers since 1951. Global Planet. Change, 73, 219232, doi:10.1016/j.gloplacha.2010.07.002.

    • Search Google Scholar
    • Export Citation
  • Xu, Z. X., , Gong T. L. , , and Li J. Y. , 2008: Decadal trend of climate in the Tibetan Plateau—Regional temperature and precipitation. Hydrol. Processes, 22, 30563065, doi:10.1002/hyp.6892.

    • Search Google Scholar
    • Export Citation
  • Yao, T., , Pu J. , , Lu A. , , Wang Y. , , and Yu W. , 2007: Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct. Antarct. Alp. Res., 39, 642650, doi:10.1657/1523-0430(07-510)[YAO]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yao, Z., , Duan R. , , and Liu Z. , 2012: Changes in precipitation and air temperature and its impacts on runoff in the Nujiang River basin (in Chinese). Resour. Sci., 34, 202210.

    • Search Google Scholar
    • Export Citation
  • You, Q., , Kang S. , , Pepin N. , , and Yan Y. , 2008: Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961–2005. Geophys. Res. Lett., 35, L04704, doi:10.1029/2007GL032669.

    • Search Google Scholar
    • Export Citation
  • You, Q., , Kang S. , , Pepin N. , , Flügel W.-A. , , Yan Y. , , Behrawan H. , , and Huang J. , 2010: Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global Planet. Change, 71, 124133, doi:10.1016/j.gloplacha.2010.01.020.

    • Search Google Scholar
    • Export Citation
  • Yue, S., , Pilon P. , , Phinney B. , , and Cavadias G. , 2002: The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Processes, 16, 18071829, doi:10.1002/hyp.1095.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., , Su F. , , Yang D. , , Hao Z. , , and Tong K. , 2013: Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmos., 118, 85008518, doi:10.1002/jgrd.50665.

    • Search Google Scholar
    • Export Citation
  • Zhang, S. F., , Hua D. , , Meng X. J. , , and Zhang Y. Y. , 2011: Climate change and its driving effect on the runoff in the “Three-River Headwaters” region. J. Geogr. Sci., 21, 963978, doi:10.1007/s11442-011-0893-y.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-Q., , Liu C. , , Tang Y. , , and Yang Y. , 2007: Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res., 112, D12110, doi:10.1029/2006JD008161.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-Y., , Zhang S. F. , , Zhai X. Y. , , and Xia J. , 2012: Runoff variation and its response to climate change in the Three Rivers source region. J. Geogr. Sci., 22, 781794, doi:10.1007/s11442-012-0963-9.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-Y., , Zhang S. F. , , Xia J. , , and Hua D. , 2013: Temporal and spatial variation of the main water balance components in the three rivers source region, China from 1960 to 2000. Environ. Earth Sci., 68, 973983, doi:10.1007/s12665-012-1800-2.

    • Search Google Scholar
    • Export Citation
  • Zhu, W., , Chen L. , , and Zhou Z. , 2001: Several characteristics of contemporary climate change in the Tibetan Plateau. Sci. China, 44, 410420, doi:10.1007/BF02912013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 173 53
PDF Downloads 116 116 29

Temperature and Precipitation Variability and Its Effects on Streamflow in the Upstream Regions of the Lancang–Mekong and Nu–Salween Rivers

View More View Less
  • 1 Asian International Rivers Center of Yunnan University, and Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, China
© Get Permissions
Restricted access

Abstract

Hydrological regimes of alpine rivers are highly sensitive to climate variability/change. Temperature and precipitation variability and its effects on streamflow in the upstream regions of the Lancang–Mekong River (LMR) and Nu–Salween River (NSR) are examined in this study based on long-term observational data from 16 meteorological stations and 2 hydrological stations between the 1950s and 2010. This study employs the Mann–Kendall nonparametric test, together with the trend-free prewhitening (TFPW) approach to test trends and the Breaks For Additive Season and Trend (BFAST) method to detect abrupt changes in the hydrometeorological time series. The relations between air temperature, precipitation, and streamflow trends are assessed using random forest regression. The results show significant climate warming and related prevalent positive precipitation trends both at the annual and seasonal scale. A substantial precipitation increase paralleling climate warming, especially in spring, was also observed. However, no consistent abrupt change in meteorological time series was found. The increasing trends of streamflow with climate warming are seen both for the outlets of the LMR and NSR upstream regions, with the abrupt changes occurring in the mid-1960s and the late 1990s, respectively. The relation of streamflow to annual and wet season precipitation is pronounced, especially for the upstream region of the LMR with a percent variance explained of more than 65%. However, the relatively minor linkage of streamflow to air temperature and dry season precipitation may be confounded by the climate warming–driven changes in snowpack, permafrost, glacier, and evapotranspiration. These results could provide further a reference for the regional water resources management under climate change scenarios.

Corresponding author address: Hui Fan, Asian International Rivers Center of Yunnan University, No. 2 North Cuihu Road, Kunming, Yunnan 650091, China. E-mail: huifancoast@gmail.com

Abstract

Hydrological regimes of alpine rivers are highly sensitive to climate variability/change. Temperature and precipitation variability and its effects on streamflow in the upstream regions of the Lancang–Mekong River (LMR) and Nu–Salween River (NSR) are examined in this study based on long-term observational data from 16 meteorological stations and 2 hydrological stations between the 1950s and 2010. This study employs the Mann–Kendall nonparametric test, together with the trend-free prewhitening (TFPW) approach to test trends and the Breaks For Additive Season and Trend (BFAST) method to detect abrupt changes in the hydrometeorological time series. The relations between air temperature, precipitation, and streamflow trends are assessed using random forest regression. The results show significant climate warming and related prevalent positive precipitation trends both at the annual and seasonal scale. A substantial precipitation increase paralleling climate warming, especially in spring, was also observed. However, no consistent abrupt change in meteorological time series was found. The increasing trends of streamflow with climate warming are seen both for the outlets of the LMR and NSR upstream regions, with the abrupt changes occurring in the mid-1960s and the late 1990s, respectively. The relation of streamflow to annual and wet season precipitation is pronounced, especially for the upstream region of the LMR with a percent variance explained of more than 65%. However, the relatively minor linkage of streamflow to air temperature and dry season precipitation may be confounded by the climate warming–driven changes in snowpack, permafrost, glacier, and evapotranspiration. These results could provide further a reference for the regional water resources management under climate change scenarios.

Corresponding author address: Hui Fan, Asian International Rivers Center of Yunnan University, No. 2 North Cuihu Road, Kunming, Yunnan 650091, China. E-mail: huifancoast@gmail.com
Save