• AghaKouchak, A., , Mehran A. , , Norouzi H. , , and Behrangi A. , 2012: Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett., 39, L09406, doi:10.1029/2012GL051592.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., , Negri A. J. , , and Adler R. F. , 1999: A satellite infrared technique for diurnal rainfall variability studies. J. Geophys. Res., 104, 31 47731 488, doi:10.1029/1999JD900157.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., , Khakbaz B. , , Jaw T. C. , , AghaKouchak A. , , Hsu K. , , and Sorooshian S. , 2011: Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol., 397, 225237, doi:10.1016/j.jhydrol.2010.11.043.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., , and Kundu P. K. , 2000: Dependence of satellite sampling error on monthly averaged rain rates: Comparison of simple models and recent studies. J. Climate, 13, 449462, doi:10.1175/1520-0442(2000)013<0449:DOSSEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., , and Krajewski W. F. , 1999: On the estimation of radar rainfall error variance. Adv. Water Resour., 22, 585595, doi:10.1016/S0309-1708(98)00043-8.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., , and Krajewski W. F. , 2004: Characterization of the temporal sampling error in space–time-averaged rainfall estimates from satellites. J. Geophys. Res., 109, D11110, doi:10.1029/2004JD004509.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., , and Krajewski W. F. , 2005: Modeling distribution of temporal sampling errors in area–time-averaged rainfall estimates. Atmos. Res., 73, 243259, doi:10.1016/j.atmosres.2004.11.004.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , Hsu K. , , Moradkhani H. , , and Sorooshian S. , 2006: Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res., 42, W08421, doi:10.1029/2005WR004398.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2004: Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction. J. Geophys. Res., 109, D07102, doi:10.1029/2003JD003986; Corrigendum, 110, D06115, doi:10.1029/2005JD005831.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., , Gao X. , , Sorooshian S. , , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 1997: Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36, 1191–1201, doi:10.1175/1520-0450(1997)036<1191:EORMSR>2.0.CO;2.

  • Huffman, G. J., , Adler R. F. , , Morrissey M. , , Bolvin D. T. , , Curtis S. , , Joyce R. , , McGavock B. , , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multi-satellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., , Lakshmi V. , , Georgakakos K. P. , , and Jain S. C. , 1991: A Monte Carlo study of rainfall sampling effect on a distributed catchment model. Water Resour. Res., 27, 119128, doi:10.1029/90WR01977.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., , Ciach G. J. , , McCollum J. R. , , and Bacotiu C. , 2000: Initial validation of the Global Precipitation Climatology Project monthly rainfall over the United States. J. Appl. Meteor., 39, 1071–1086, doi:10.1175/1520-0450(2000)039<1071:IVOTGP>2.0.CO;2.

  • Kunsch, H. R., 1989: The jackknife and the bootstrap for general stationary observation. Ann. Stat., 17, 12171241, doi:10.1214/aos/1176347265.

    • Search Google Scholar
    • Export Citation
  • Laughlin, C. R., 1981: On the effect of temporal sampling on the observation of mean rainfall. Precipitation Measurements from Space, D. Atlas and O. Thiele, Eds., NASA Workshop Reports, NASA, D-59–D-66.

  • Li, Q., , Ferraro R. , , and Grody N. C. , 1998: Detailed analysis of the error associated with the rainfall retrieved by the NOAA/NESDIS SSM/I rainfall algorithm: 1. Tropical oceanic rainfall. J. Geophys. Res., 103, 11 41911 427, doi:10.1029/98JD00680.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., , and Mitchell K. , 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Maggioni, V., , Sapiano R. P. M. , , Adler R. F. , , Tian Y. , , and Huffman G. J. , 2014: An error model for uncertainty quantification in high-time resolution precipitation products. J. Hydrometeor., 15, 12741292, doi:10.1175/JHM-D-13-0112.1.

    • Search Google Scholar
    • Export Citation
  • Oki, R., , and Sumi A. , 1994: Sampling simulation of TRMM rainfall estimation using RadarAMeDAS composites. J. Appl. Meteor., 33, 15971608, doi:10.1175/1520-0450(1994)033<1597:SSOTRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., 2004: Radar for Meteorologists. 4th ed. Rinehart, 428 pp.

  • Seed, A. W., , and Austin G. L. , 1990: Sampling errors for raingauge-derived mean areal daily and monthly rainfall. J. Hydrol., 118, 163173, doi:10.1016/0022-1694(90)90256-W.

    • Search Google Scholar
    • Export Citation
  • Smalley, M., , L’Ecuyer T. , , Lebsock M. , , and Haynes J. , 2014: A comparison of precipitation occurrence from the NCEP stage IV QPE product and the CloudSat Cloud Profiling Radar. J. Hydrometeor., 15, 444458, doi:10.1175/JHM-D-13-048.1.

    • Search Google Scholar
    • Export Citation
  • Smith, M. B., , Seo D. , , Koren V. I. , , Reed S. M. , , Zhang Z. , , Duan Q. , , Moreda F. , , and Cong S. , 2004: The distributed model intercomparison project (DMIP): Motivation and experiment design. J. Hydrol., 298, 426, doi:10.1016/j.jhydrol.2004.03.040.

    • Search Google Scholar
    • Export Citation
  • Soman, V. V., , Valdés J. B. , , and North G. R. , 1995: Satellite sampling and the diurnal cycle statistics of Darwin rainfall data. J. Appl. Meteor., 34, 24812490, doi:10.1175/1520-0450(1995)034<2481:SSATDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soman, V. V., , Valdés J. B. , , and North G. R. , 1996: Estimation of sampling errors and scale parameters using two- and three-dimensional rainfall data analyses. J. Geophys. Res., 101, 26 45326 460, doi:10.1029/96JD01387.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., , Hsu K. , , Gao X. , , Gupta H. V. , , Imam B. , , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., 1996: Uncertainty of estimates of monthly areal rainfall for temporally sparse remote observations. Water Resour. Res., 32, 373388, doi:10.1029/95WR03396.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , Smith J. A. , , Burges S. J. , , Alonso C. V. , , and Darden R. W. , 1999: Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resour. Res., 35, 24872503, doi:10.1029/1999WR900142.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , Bell T. L. , , Zhang Y. , , and Wood E. F. , 2003: Comparison of two methods for estimating the sampling-related uncertainty of satellite rainfall averages based on large radar dataset. J. Climate, 16, 37593778, doi:10.1175/1520-0442(2003)016<3759:COTMFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and et al. , 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, doi:10.1029/2009JD011949.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and Krajewski W. F. , 2007: Evaluation of the research-version TMPA three-hourly 0.25° × 0.25° rainfall estimates over Oklahoma. Geophys. Res. Lett., 34, L05402, doi:10.1029/2006GL029147.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and Krajewski W. F. , 2008: Empirically based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauge. Adv. Water Resour., 31, 10151023, doi:10.1016/j.advwatres.2008.04.007.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and Krajewski W. F. , 2009: New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma. J. Geophys. Res., 114, D12106, doi:10.1029/2008JD011475.

    • Search Google Scholar
    • Export Citation
  • Weng, F., , Ferrero R. R. , , and Grody N. C. , 1994: Global precipitation estimation using Defense Meteorological Satellite Program F10 and F11 special sensor microwave imager data. J. Geophys. Res., 99, 14 49314 502, doi:10.1029/94JD00961.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , Janowiak J. E. , , Arkin P. A. , , Adler R. F. , , Gruber A. , , Ferraro R. , , Huffman G. J. , , and Curtis S. , 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 21972214, doi:10.1175/2769.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 121 121 34
PDF Downloads 107 107 35

A Statistical Model for the Uncertainty Analysis of Satellite Precipitation Products

View More View Less
  • 1 Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California
© Get Permissions
Restricted access

Abstract

Earth-observing satellites provide a method to measure precipitation from space with good spatial and temporal coverage, but these estimates have a high degree of uncertainty associated with them. Understanding and quantifying the uncertainty of the satellite estimates can be very beneficial when using these precipitation products in hydrological applications. In this study, the generalized normal distribution (GND) model is used to model the uncertainty of the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) precipitation product. The stage IV Multisensor Precipitation Estimator (radar-based product) was used as the reference measurement. The distribution parameters of the GND model are further extended across various rainfall rates and spatial and temporal resolutions. The GND model is calibrated for an area of 5° × 5° over the southeastern United States for both summer and winter seasons from 2004 to 2009. The GND model is used to represent the joint probability distribution of satellite (PERSIANN) and radar (stage IV) rainfall. The method is further investigated for the period of 2006–08 over the Illinois watershed south of Siloam Springs, Arkansas. Results show that, using the proposed method, the estimation of the precipitation is improved in terms of percent bias and root-mean-square error.

Corresponding author address: Sepideh Sarachi, Dept. of Civil and Environmental Engineering, University of California, Irvine, 5300 Engineering Hall, Irvine, CA 92697. E-mail: ssarachi@uci.edu

Abstract

Earth-observing satellites provide a method to measure precipitation from space with good spatial and temporal coverage, but these estimates have a high degree of uncertainty associated with them. Understanding and quantifying the uncertainty of the satellite estimates can be very beneficial when using these precipitation products in hydrological applications. In this study, the generalized normal distribution (GND) model is used to model the uncertainty of the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) precipitation product. The stage IV Multisensor Precipitation Estimator (radar-based product) was used as the reference measurement. The distribution parameters of the GND model are further extended across various rainfall rates and spatial and temporal resolutions. The GND model is calibrated for an area of 5° × 5° over the southeastern United States for both summer and winter seasons from 2004 to 2009. The GND model is used to represent the joint probability distribution of satellite (PERSIANN) and radar (stage IV) rainfall. The method is further investigated for the period of 2006–08 over the Illinois watershed south of Siloam Springs, Arkansas. Results show that, using the proposed method, the estimation of the precipitation is improved in terms of percent bias and root-mean-square error.

Corresponding author address: Sepideh Sarachi, Dept. of Civil and Environmental Engineering, University of California, Irvine, 5300 Engineering Hall, Irvine, CA 92697. E-mail: ssarachi@uci.edu
Save