• Austin, G. L., and Bellon A. , 1974: The use of digital weather radar records for short-term precipitation forecasting. Quart. J. Roy. Meteor. Soc., 100, 658664, doi:10.1002/qj.49710042612.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., and Houze R. A. Jr., 1972: Analysis of the structure of precipitation patterns in New England. J. Appl. Meteor., 11, 926935, doi:10.1175/1520-0450(1972)011<0926:AOTSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., Pierce C. E. , and Seed A. , 2004: Development of a precipitation nowcasting algorithm based upon optical flow techniques. J. Hydrol., 288, 7491, doi:10.1016/j.jhydrol.2003.11.011.

    • Search Google Scholar
    • Export Citation
  • Crane, R. K., 1990: Space–time structure of rain rate fields. J. Geophys. Res., 95, 20112020, doi:10.1029/JD095iD03p02011.

  • Fabry, F., 1996: On the determination of scale ranges for precipitation fields. J. Geophys. Res., 101, 12 819–12 826, doi:10.1029/96JD00718.

  • Germann, U., and Zawadzki I. , 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873, doi:10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., and Waymire E. , 1987: On Taylor’s hypothesis and dissipation in rainfall. J. Geophys. Res., 92, 96579660, doi:10.1029/JD092iD08p09657.

    • Search Google Scholar
    • Export Citation
  • Lantuéjoul, C., 2002: Geostatistical Simulation: Models and Algorithms. Springer, 256 pp.

  • Laroche, S., and Zawadzki I. , 1995: Retrievals of horizontal winds from single-Doppler clear-air data by methods of cross correlation and variational analysis. J. Atmos. Oceanic Technol., 12, 721738, doi:10.1175/1520-0426(1995)012<0721:ROHWFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leblois, E., and Creutin J.-D. , 2013: Space–time simulation of intermittent rainfall with prescribed advection field: Adaptation of the turning band method. Water Resour. Res., 49, 33753387, doi:10.1002/wrcr.20190.

    • Search Google Scholar
    • Export Citation
  • Li, B., Murthi A. , Bowman K. P. , North G. R. , Genton M. G. , and Sherman M. , 2009: Statistical tests of Taylor's hypothesis: An application to precipitation fields. J. Hydrometeor., 10, 254265, doi:10.1175/2008JHM1009.1.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and Mandelbrot B. , 1985: Fractal properties of rain, and a fractal model. Tellus, 37A, 209232, doi:10.1111/j.1600-0870.1985.tb00423.x.

    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1965: Les variables régionalisées et leur estimation. Masson, 305 pp.

  • Niemczynowicz, J., 1988: The rainfall movement—A valuable complement to short-term rainfall data. J. Hydrol., 104, 311326, doi:10.1016/0022-1694(88)90172-2.

    • Search Google Scholar
    • Export Citation
  • Poveda, G., and Zuluaga M. D. , 2005: Testing Taylor’s hypothesis in Amazonian rainfall fields during the WETAMC/LBA experiment. Adv. Water Resour., 28, 12301239, doi:10.1016/j.advwatres.2005.03.012.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164, 476490, doi:10.1098/rspa.1938.0032.

  • Upton, G. J. G., 2002: A correlation–regression method for tracking rainstorms using rain-gauge data. J. Hydrol., 261, 6073, doi:10.1016/S0022-1694(01)00618-7.

    • Search Google Scholar
    • Export Citation
  • Waymire, E., Gupta V. K. , and Rodriguez-Iturbe I. , 1984: A spectral theory of rainfall intensity at the meso-β scale. Water Resour. Res., 20, 14531465, doi:10.1029/WR020i010p01453.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and Yanai M. , 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660, doi:10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 1973: Statistical properties of precipitation patterns. J. Appl. Meteor., 12, 459472, doi:10.1175/1520-0450(1973)012<0459:SPOPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., Morneau J. , and Laprise R. , 1994: Predictability of precipitation patterns: An operational approach. J. Appl. Meteor., 33, 15621571, doi:10.1175/1520-0450(1994)033<1562:POPPAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 40 2
PDF Downloads 70 24 0

Unfreezing Taylor’s Hypothesis for Precipitation

View More View Less
  • 1 Laboratoire d’étude des Transferts en Hydrologie et Environnement, Université Grenoble Alpes and CNRS, Grenoble, France
  • | 2 Hydrology–Hydraulics Research Unit, Centre de Lyon-Villeurbanne, Irstea, Villeurbanne, France
  • | 3 Norwegian Meteorological Institute, Oslo, Norway
Restricted access

Abstract

Since the seminal work of Zawadzki in the seventies, the so-called Taylor’s “frozen” hypothesis has been regularly used to study the statistical properties of rainfall patterns. This hypothesis yields a drastic simplification in terms of symmetry of the space–time structure—the large-scale advection velocity is the conversion factor used to link the time and space autocorrelation functions (ACFs) of the small-scale variability. This study revisits the frozen hypothesis with a geostatistical model. Using analytical developments and numerical simulations tuned on available case studies from the literature, the role of large- and small-scale rainfall kinematics on the properties of the space–time ACF and associated fluctuations is investigated. In particular, the merits and limits of the ACF signature classically used to test the frozen hypothesis are examined. The conclusion is twofold. Taylor’s hypothesis, understood as the quest for a space–time symmetry in rain field variability, remains important in hydrometeorology four decades after the pioneering work of Zawadzki. The frozen hypothesis, introduced for simplification purposes, appears difficult to check and too constraining. The methods proposed to check the hypothesis rely too directly on the use of the advection velocity as a space–time conversion factor instead of contemplating the ACF signature more globally. The model proposed that using two characteristic velocities instead of one appears more flexible to fit the ACF behaviors presented in the literature. This remains to be checked over a long-term high-resolution dataset.

Corresponding author address: Etienne Leblois, Irstea-Lyon, 5 rue de la Doua, CS 70077, F-69626 Villeurbanne Cedex, France. E-mail: etienne.leblois@irstea.fr

Abstract

Since the seminal work of Zawadzki in the seventies, the so-called Taylor’s “frozen” hypothesis has been regularly used to study the statistical properties of rainfall patterns. This hypothesis yields a drastic simplification in terms of symmetry of the space–time structure—the large-scale advection velocity is the conversion factor used to link the time and space autocorrelation functions (ACFs) of the small-scale variability. This study revisits the frozen hypothesis with a geostatistical model. Using analytical developments and numerical simulations tuned on available case studies from the literature, the role of large- and small-scale rainfall kinematics on the properties of the space–time ACF and associated fluctuations is investigated. In particular, the merits and limits of the ACF signature classically used to test the frozen hypothesis are examined. The conclusion is twofold. Taylor’s hypothesis, understood as the quest for a space–time symmetry in rain field variability, remains important in hydrometeorology four decades after the pioneering work of Zawadzki. The frozen hypothesis, introduced for simplification purposes, appears difficult to check and too constraining. The methods proposed to check the hypothesis rely too directly on the use of the advection velocity as a space–time conversion factor instead of contemplating the ACF signature more globally. The model proposed that using two characteristic velocities instead of one appears more flexible to fit the ACF behaviors presented in the literature. This remains to be checked over a long-term high-resolution dataset.

Corresponding author address: Etienne Leblois, Irstea-Lyon, 5 rue de la Doua, CS 70077, F-69626 Villeurbanne Cedex, France. E-mail: etienne.leblois@irstea.fr
Save