• Anagnostopoulou, C., and Tolika K. , 2012: Extreme precipitation in Europe: Statistical threshold selection based on climatological criteria. Theor. Appl. Climatol., 107, 479489, doi:10.1007/s00704-011-0487-8.

    • Search Google Scholar
    • Export Citation
  • Armstrong, R. L., and Brodzik M. J. , 1995: An Earth-gridded SSM/I data set for cryospheric studies and global change monitoring. Adv. Space Res., 16, 155163, doi:10.1016/0273-1177(95)00397-W.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., 2011: Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett., 38, L04705, doi:10.1029/2010GL046258.

    • Search Google Scholar
    • Export Citation
  • Beguería, S., Angulo-Martínez M. , Vicente-Serrano S. , López-Moreno J. I. , and El-Kenawy A. , 2011: Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: A case study in northeast Spain from 1930 to 2006. Int. J. Climatol., 31, 21022114, doi:10.1002/joc.2218.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., Pagnotti V. , and Lettau B. , 1973: Climatological aspects of eastern United States back-door cold frontal passages. Mon. Wea. Rev., 101, 627635, doi:10.1175/1520-0493(1973)101<0627:CAOEUS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and Pfahl S. , 2013: The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos., 118, 10 79110 801, doi:10.1002/jgrd.50852.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., Jakob C. , Berry G. , and Nicholls N. , 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, doi:10.1029/2012GL051736.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 2009: Time-dependent changes in extreme-precipitation return-period amounts in the continental United States. J. Appl. Meteor. Climatol., 48, 20862099, doi:10.1175/2009JAMC2179.1.

    • Search Google Scholar
    • Export Citation
  • Douglas, E. M., and Fairbank C. A. , 2011: Is precipitation in northern New England becoming more extreme? Statistical analysis of extreme rainfall in Massachusetts, New Hampshire, and Maine and updated estimates of the 100-year storm. J. Hydrol. Eng., 16, 203217, doi:10.1061/(ASCE)HE.1943-5584.0000303.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., Karl T. R. , Lawrimore J. H. , and Del Greco S. A. , 1999: United States Historical Climatology Network daily temperature, precipitation, and snow data for 1871–1997. ORNL/CDIAC-118, NDP-070. Carbon Dioxide Information Analysis Center, accessed 25 June 2012. [Available online at http://gcmd.nasa.gov/records/GCMD_CDIAC_NDP070.html.]

  • Federal Emergency Management Agency, 2006: Mass. disaster aid surpasses $70 million for May floods. [Available online at http://www.fema.gov/news-release/2006/09/22/mass-disaster-aid-surpasses-70-million-may-floods.]

  • Griffiths, M. L., and Bradley R. S. , 2007: Variations of twentieth-century temperature and precipitation extreme indicators in the Northeast United States. J. Climate, 20, 54015417, doi:10.1175/2007JCLI1594.1.

    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., Shaffrey L. C. , Hodges K. I. , and Dacre H. F. , 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, doi:10.1029/2012GL053866.

    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., Trapp R. J. , Baldwin M. E. , and Gluhovsky A. , 2010: Characterizing subdiurnal extreme precipitation in the midwestern United States. J. Hydrometeor., 11, 211218, doi:10.1175/2009JHM1129.1.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S. K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kenyon, J., and Hegerl G. C. , 2010: Influence of modes of climate variability on global precipitation extremes. J. Climate, 23, 62486262, doi:10.1175/2010JCLI3617.1.

    • Search Google Scholar
    • Export Citation
  • Kocin, P. J., and Uccellini L. W. , 2004: Northeast Snowstorms. Meteor. Monogr., No. 54, Amer. Meteor. Soc., 818 pp.

  • Konrad, C. E., II, 2001: The most extreme precipitation events over the eastern United States from 1950 to 1996: Considerations of scale. J. Hydrometeor., 2, 309325, doi:10.1175/1525-7541(2001)002<0309:TMEPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., Andsager K. , and Easterling D. R. , 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152527, doi:10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., Easterling D. R. , Kristovich D. A. R. , Gleason B. , Stoecker L. , and Smith R. , 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, doi:10.1175/JHM-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2013a: Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Amer. Meteor. Soc., 94, 499514, doi:10.1175/BAMS-D-11-00262.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2013b: Regional climate trends and scenarios for the U.S. National Climate Assessment. Part 1. Climate of the Northeast U.S., NOAA Tech. Rep. NESDIS 142-1, 80 pp. [Available online at http://www.nesdis.noaa.gov/technical_reports/NOAA_NESDIS_Tech_Report_142-1-Climate_of_the_Northeast_U.S.pdf.]

  • Landsea, C. W., and Franklin J. L. , 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., Mok H. Y. , Lee T. C. , and Van Oldenborgh G. J. , 2011: Scaling and trends of hourly precipitation extremes in two different climate zones—Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci., 15, 30333041, doi:10.5194/hess-15-3033-2011.

    • Search Google Scholar
    • Export Citation
  • Lott, N., and Ross T. , 2006: Tracking and evaluating U. S. billion dollar weather disasters, 1980–2005. AMS Forum: Environmental Risk and Impacts on Society: Successes and Challenges, Atlanta, GA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2006/techprogram/paper_100686.htm.]

  • Marks, F. D., and Austin P. M. , 1979: Effects of the New England coastal front on the distribution of precipitation. Mon. Wea. Rev., 107, 5367, doi:10.1175/1520-0493(1979)107<0053:EOTNEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melillo, J. M., Richmond T. C. , and Yohe G. W. , 2014: Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, 841 pp., doi:10.7930/J0Z31WJ2.

    • Search Google Scholar
    • Export Citation
  • Michelangeli, P., Vautard R. , and Legras B. , 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, doi:10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murray, J. C., and Colle B. A. , 2011: The spatial and temporal variability of convective storms over the Northeast United States during the warm season. Mon. Wea. Rev., 139, 9921012, doi:10.1175/2010MWR3316.1.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2014: HURDAT Re-Analysis Project. Hurricane Research Division, Atlantic Oceanographic and Meteorological Laboratory, accessed 13 February 2014. [Available online at http://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html.]

  • NOAA, 2015: Billion-dollar weather and climate disasters: Table of events. [Available online at http://www.ncdc.noaa.gov/billions/events.]

  • Peterson, T. C., and Coauthors, 2013: Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge. Bull. Amer. Meteor. Soc., 94, 821834, doi:10.1175/BAMS-D-12-00066.1.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and Wernli H. , 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, doi:10.1175/JCLI-D-11-00705.1.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., Howe J. A. , and Kunkel K. E. , 2009: How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int. J. Climatol., 29, 3145, doi:10.1002/joc.1696.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Sukovich E. , Reynolds D. , Dettinger M. , Weagle S. , Clark W. , and Neiman P. J. , 2010: Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers. J. Hydrometeor., 11, 12861304, doi:10.1175/2010JHM1232.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 33, 123, doi:10.1080/07055900.1995.9649522.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., Carse F. , Barry R. G. , and Rogers J. C. , 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10, 453464, doi:10.1175/1520-0442(1997)010<0453:ILCACF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Dai A. , Rasmussen R. M. , and Parsons D. B. , 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Tryhorn, L., and DeGaetano A. , 2011: A comparison of techniques for downscaling extreme precipitation over the Northeastern United States. Int. J. Climatol., 31, 19751989, doi:10.1002/joc.2208.

    • Search Google Scholar
    • Export Citation
  • Yiou, P., Goubanova K. , Li Z. X. , and Nogaj M. , 2008: Weather regime dependence of extreme value statistics for summer temperature and precipitation. Nonlinear Processes Geophys., 15, 365378, doi:10.5194/npg-15-365-2008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 916 481 36
PDF Downloads 785 411 37

Climatology of Daily Precipitation and Extreme Precipitation Events in the Northeast United States

View More View Less
  • 1 * Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
  • | 2 Intercampus Marine Science Graduate Program, University of Massachusetts Lowell, Lowell, Massachusetts
  • | 3 Climate Change Initiative, University of Massachusetts Lowell, Lowell, Massachusetts
  • | 4 Wind Energy Research Group, University of Massachusetts Lowell, Lowell, Massachusetts
  • | 5 School for the Environment, University of Massachusetts Boston, Boston, Massachusetts
  • | 6 ** Earth and Atmospheric Sciences, University of St. Louis, St. Louis, Missouri
Restricted access

Abstract

This study examines U.S. Northeast daily precipitation and extreme precipitation characteristics for the 1979–2008 period, focusing on daily station data. Seasonal and spatial distribution, time scale, and relation to large-scale factors are examined. Both parametric and nonparametric extreme definitions are considered, and the top 1% of wet days is chosen as a balance between sample size and emphasis on tail distribution. The seasonal cycle of daily precipitation exhibits two distinct subregions: inland stations characterized by frequent precipitation that peaks in summer and coastal stations characterized by less frequent but more intense precipitation that peaks in late spring as well as early fall. For both subregions, the frequency of extreme precipitation is greatest in the warm season, while the intensity of extreme precipitation shows no distinct seasonal cycle. The majority of Northeast precipitation occurs as isolated 1-day events, while most extreme precipitation occurs on a single day embedded in 2–5-day precipitation events. On these extreme days, examination of hourly data shows that 3 h or less account for approximately 50% of daily accumulation. Northeast station precipitation extremes are not particularly spatially cohesive: over 50% of extreme events occur at single stations only, and 90% occur at only 1–3 stations concurrently. The majority of extreme days (75%–100%) are related to extratropical storms, except during September, when more than 50% of extremes are related to tropical storms. Storm tracks on extreme days are farther southwest and more clustered than for all storm-related precipitation days.

Corresponding author address: Laurie Agel, Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854. E-mail: laurie_agel@student.uml.edu

Abstract

This study examines U.S. Northeast daily precipitation and extreme precipitation characteristics for the 1979–2008 period, focusing on daily station data. Seasonal and spatial distribution, time scale, and relation to large-scale factors are examined. Both parametric and nonparametric extreme definitions are considered, and the top 1% of wet days is chosen as a balance between sample size and emphasis on tail distribution. The seasonal cycle of daily precipitation exhibits two distinct subregions: inland stations characterized by frequent precipitation that peaks in summer and coastal stations characterized by less frequent but more intense precipitation that peaks in late spring as well as early fall. For both subregions, the frequency of extreme precipitation is greatest in the warm season, while the intensity of extreme precipitation shows no distinct seasonal cycle. The majority of Northeast precipitation occurs as isolated 1-day events, while most extreme precipitation occurs on a single day embedded in 2–5-day precipitation events. On these extreme days, examination of hourly data shows that 3 h or less account for approximately 50% of daily accumulation. Northeast station precipitation extremes are not particularly spatially cohesive: over 50% of extreme events occur at single stations only, and 90% occur at only 1–3 stations concurrently. The majority of extreme days (75%–100%) are related to extratropical storms, except during September, when more than 50% of extremes are related to tropical storms. Storm tracks on extreme days are farther southwest and more clustered than for all storm-related precipitation days.

Corresponding author address: Laurie Agel, Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854. E-mail: laurie_agel@student.uml.edu
Save