• Alter, J. C., 1919: Normal precipitation in Utah. Mon. Wea. Rev., 47, 633636, doi:10.1175/1520-0493(1919)47<633:NPIU>2.0.CO;2.

  • Anderson, E., and Coauthors, 1999: LAPACK Users’ Guide. 3rd ed. Society for Industrial and Applied Mathematics, 429 pp.

  • Andreadis, K. M., and Lettenmaier D. P. , 2006: Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resources, 29, 872886, doi:10.1016/j.advwatres.2005.08.004.

    • Search Google Scholar
    • Export Citation
  • Andréassian, V., and Coauthors, 2009: Crash tests for a standardized evaluation of hydrological models. Hydrol. Earth Syst. Sci., 13, 17571764, doi:10.5194/hess-13-1757-2009.

    • Search Google Scholar
    • Export Citation
  • Barrows, H. K., 1933: Precipitation and runoff and altitude relations for Connecticut River. Trans. Amer. Geophys. Union, 14, 396406, doi:10.1029/TR014i001p00396.

    • Search Google Scholar
    • Export Citation
  • Bastola, S., and Misra V. , 2014: Evaluation of dynamically downscaled reanalysis precipitation data for hydrological application. Hydrol. Processes, 28, 19892002, doi:10.1002/hyp.9734.

    • Search Google Scholar
    • Export Citation
  • Bourqui, M., Hendrickx F. , and Le Moine N. , 2011: Long-term forecasting of flow and water temperature for cooling systems: Case study of the Rhone River, France. IAHS Publ., 348, 135–142.

  • Brown, D. P., and Comrie A. C. , 2002: Spatial modeling of winter temperature and precipitation in Arizona and New Mexico, USA. Climate Res., 22, 115128, doi:10.3354/cr022115.

    • Search Google Scholar
    • Export Citation
  • Charbonneau, R., Fortin J.-P. , and Morin G. , 1977: The CEQUEAU model: Description and examples of its use in problems related to water resource management. Hydrol. Sci. Bull., 22, 193202, doi:10.1080/02626667709491704.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Coauthors, 2011: Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resour. Res., 47, W07539, doi:10.1029/2011WR010745.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Fung I. Y. , and Del Genio A. D. , 1997: Surface observed global land precipitation variations during 1900–88. J. Climate, 10, 29432962, doi:10.1175/1520-0442(1997)010<2943:SOGLPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol., 26, 707721, doi:10.1002/joc.1322.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140–158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

  • Daly, C., Gibson W. P. , Taylor G. H. , Johnson G. L. , and Pasteris P. , 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22, 99113, doi:10.3354/cr022099.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Helmer E. H. , and Quinones M. , 2003: Mapping the climate of Puerto Rico, Vieques, and Culebra. Int. J. Climatol., 23, 13591381, doi:10.1002/joc.937.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Halbleib M. , Smith J. I. , Gibson W. P. , Doggett M. K. , Taylor G. H. , Curtis J. , and Pasteris P. P. , 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2014: Impacts in the third dimension. Nat. Geosci., 7, 166167, doi:10.1038/ngeo2096.

  • Duethmann, D., Zimmer J. , Gafurov A. , Güntner A. , Kriegel D. , Merz B. , and Vorogushyn S. , 2013: Evaluation of areal precipitation estimates based on downscaled reanalysis and station data by hydrological modelling. Hydrol. Earth Syst. Sci., 17, 24152434, doi:10.5194/hess-17-2415-2013.

    • Search Google Scholar
    • Export Citation
  • Duethmann, D., Peters J. , Blume T. , Vorogushyn S. , and Güntner A. , 2014: The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia. Water Resour. Res., 50, 2002–2021, doi:10.1002/2013WR014382.

  • Funk, C., Michaelsen J. , Verdin J. , Artan G. , Husak G. , Senay G. , Gadain H. , and Magadazire T. , 2003: The collaborative historical African rainfall model: Description and evaluation. Int. J. Climatol., 23, 4766, doi:10.1002/joc.866.

    • Search Google Scholar
    • Export Citation
  • Garavaglia, F., Gailhard J. , Paquet E. , Lang M. , Garçon R. , and Bernardara P. , 2010: Introducing a rainfall compound distribution model based on weather patterns sub-sampling. Hydrol. Earth Syst. Sci., 14, 951964, doi:10.5194/hess-14-951-2010.

    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation into spatial interpolation of rainfall. J. Hydrol., 228, 113129, doi:10.1016/S0022-1694(00)00144-X.

    • Search Google Scholar
    • Export Citation
  • Gottardi, F., 2009: Estimation statistique et réanalyse des précipitations en montagne: Utilisation d’ébauches par types de temps et assimilation de données d’enneigement. Application aux grands massifs montagneux français. Ph.D. thesis, Grenoble INP/EDF, 284 pp.

  • Gupta, H. V., Kling H. , Yilmaz K. K. , and Martinez F. G. , 2009: Decomposition of the mean square error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, doi:10.1016/j.jhydrol.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., and Gates L. D. , 2001: Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model. J. Geophys. Res., 106, 15031510, doi:10.1029/2000JD900568.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and Lettenmaier D. P. , 2005: Production of temporally consistent gridded precipitation and temperature fields for the continental United States. J. Hydrometeor., 6, 330336, doi:10.1175/JHM420.1.

    • Search Google Scholar
    • Export Citation
  • Hart, F. C., 1937: Precipitation and run-off in relation to altitude in the Rocky Mountain region. J. For., 35, 10051010.

  • Hayami, S., 1951: On the propagation of flood waves. Bulletin of the Disaster Prevention Research Institute, No. 1, Kyoto University, Kyoto, Japan, 1–16.

  • Henry, A. J., 1919: Increase of precipitation with altitude. Mon. Wea. Rev., 47, 3341, doi:10.1175/1520-0493(1919)47<33:IOPWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hijmans, R. J., Cameron S. E. , Parra J. L. , Jones P. G. , and Jarvis A. , 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, doi:10.1002/joc.1276.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., Pellicciotti F. , and Shrestha A. B. , 2012: Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza basin. Mt. Res. Dev., 32, 3038, doi:10.1659/MRD-JOURNAL-D-11-00097.1.

    • Search Google Scholar
    • Export Citation
  • Jabot, E., Zin I. , Lebel T. , Gautheron A. , and Obled C. , 2012: Spatial interpolation of sub-daily air temperatures for snow and hydrologic applications in mesoscale Alpine catchments. Hydrol. Processes, 26, 2618–2630, doi:10.1002/hyp.9423.

  • Johansson, B., and Chen D. , 2005: Estimation of areal precipitation for runoff modelling using wind data: A case study in Sweden. Climate Res., 29, 5361, doi:10.3354/cr029053.

    • Search Google Scholar
    • Export Citation
  • Kirchner, J. W., 2009: Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res., 45, doi:10.1029/2008WR006912.

    • Search Google Scholar
    • Export Citation
  • Klemeš, V., 1986: Operational testing of hydrological simulation models. Hydrol. Sci. J., 31, 1324, doi:10.1080/02626668609491024.

  • Le Moine, N., 2009: Description d’un algorithme génétique multi-objectif pour la calibration d’un modèle pluie-débit (in French). Post-Doctoral Status Rep. 2, UPMC/EDF, 13 pp. [Available online at http://www.sisyphe.upmc.fr/~lemoine/docs/CaRaMEL.pdf.]

  • Le Moine, N., Hendrickx F. , and Gailhard J. , 2013: Rainfall-runoff modelling as a tool for constraining the reanalysis of daily precipitation and temperature fields in mountainous regions. IAHS Publ., 360, 13–18.

  • Legates, D. R., and Willmott C. J. , 1990a: Mean seasonal and spatial variability in global surface air temperature. Theor. Appl. Climatol., 41, 1121, doi:10.1007/BF00866198.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and Willmott C. J. , 1990b: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127, doi:10.1002/joc.3370100202.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., and Cayan D. R. , 2007: Surface temperature patterns in complex terrain: Daily variations and long-term change in the central Sierra Nevada, California. J. Geophys. Res., 112, D11124, doi:10.1029/2006JD007561.

    • Search Google Scholar
    • Export Citation
  • Magand, C., Ducharne A. , Le Moine N. , and Gascoin S. , 2014: Introducing hysteresis in snow depletion curves to improve the water budget of a land surface model in an Alpine catchment. J. Hydrometeor., 15, 631–649, doi:10.1175/JHM-D-13-091.1.

    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1974: Effet proportionnel et lognormalité ou: Le retour du serpent de mer. Note Géostatistique 124, 43 pp.

  • New, M., Hulme M. , and Jones P. D. , 2000: Representing twentieth century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • New, M., Lister D. , Hulme M. , and Makin I. , 2002: A high-resolution data set of surface climate over global land areas. Climate Res., 21, 115, doi:10.3354/cr021001.

    • Search Google Scholar
    • Export Citation
  • Oudin, L., Hervieu F. , Michel C. , Perrin C. , Andréassian V. , Anctil F. , and Loumagne C. , 2005: Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol., 303, 290306, doi:10.1016/j.jhydrol.2004.08.026.

    • Search Google Scholar
    • Export Citation
  • Paquet, E., Gailhard J. , and Garçon R. , 2006: Évolution de la méthode du gradex: Approche par type de temps et modélisation hydrologique. Houille Blanche, 5, 8090, doi:10.1051/lhb:2006091.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., Teukolsky S. , Vetterling W. , and Flannery B. , 1992: Numerical Recipes in C. 2nd ed. Cambridge University Press, 994 pp.

  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.

  • Rothfuss, Y., Braud I. , Le Moine N. , Biron P. , Durand J.-L. , Vauclin M. , and Bariac T. , 2012: Factors controlling the isotopic partitioning between soil evaporation and plant transpiration: Assessment using a multi-objective calibration of SiSPAT-Isotope under controlled conditions. J. Hydrol., 442–443, 7588, doi:10.1016/j.jhydrol.2012.03.041.

    • Search Google Scholar
    • Export Citation
  • Siler, N., and Roe G. , 2014: How will orographic precipitation respond to surface warming? An idealized thermodynamic perspective. Geophys. Res. Lett., 41, 2606–2613, doi:10.1002/2013GL059095.

    • Search Google Scholar
    • Export Citation
  • Skøien, J. O., Merz R. , and Blöschl G. , 2006: Top-kriging—Geostatistics on stream networks. Hydrol. Earth Syst. Sci., 10, 277287, doi:10.5194/hess-10-277-2006.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., Running S. W. , and White M. A. , 1997: Generating surfaces of daily meteorology variables over large regions of complex terrain. J. Hydrol., 190, 214251, doi:10.1016/S0022-1694(96)03128-9.

    • Search Google Scholar
    • Export Citation
  • Valéry, A., Andréassian V. , and Perrin C. , 2009: Inverting the hydrological cycle: When streamflow measurements help assess altitudinal precipitation gradients in mountain areas. IAHS Publ., 333, 281–286.

  • Vischel, T., Lebel T. , Massuel S. , and Cappelaere B. , 2009: Conditional simulation schemes of rain fields and their application to rainfall–runoff modeling studies in the Sahel. J. Hydrol., 375, 273286, doi:10.1016/j.jhydrol.2009.02.028.

    • Search Google Scholar
    • Export Citation
  • Viviroli, D., and Weingartner R. , 2008: “Water towers”—A global view of the hydrological importance of mountains. Mountains: Sources of Water, Sources of Knowledge, E. Wiegandt, Ed., Advances in Global Change Research, Vol. 31, Springer, 15–20, doi:10.1007/978-1-4020-6748-8_2.

  • Weingartner, R., Viviroli D. , and Schädler B. , 2007: Water resources in mountain regions: A methodological approach to assess the water balance in a highland-lowland-system. Hydrol. Processes, 21, 578585, doi:10.1002/hyp.6268.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and Robeson S. M. , 1995: Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol., 15, 221229, doi:10.1002/joc.3370150207.

    • Search Google Scholar
    • Export Citation
  • Yan, Z., Gottschalk L. , Leblois E. , and Xia J. , 2012: Joint mapping of water balance components in a large Chinese basin. J. Hydrol., 450–451, 5969, doi:10.1016/j.jhydrol.2012.05.030.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 124 68 1
PDF Downloads 67 25 0

Hydrologically Aided Interpolation of Daily Precipitation and Temperature Fields in a Mesoscale Alpine Catchment

View More View Less
  • 1 Sorbonne Universités, UPMC Université Paris 06, CNRS, EPHE, UMR Metis, Paris, France
  • | 2 Électricité de France R&D, Chatou, France
  • | 3 Électricité de France DTG, Grenoble, France
Restricted access

Abstract

Hydrological modeling in mountainous regions, where catchment hydrology is heavily influenced by snow (and possibly ice) processes, is a challenging task. The intrinsic complexity of local processes is added to the difficulty of estimating spatially distributed inputs such as precipitation and temperature, which often exhibit a high spatial heterogeneity that cannot be fully captured by measurement networks. Hence, an interpolation step is often required prior to the hydrological modeling step. Usually, the reconstruction of meteorological forcings and the calibration of the hydrological model are done sequentially. The outputs of the hydrological model (discharge estimates) may give some insight into the quality of the forcings used to feed it, but in this two-step independent analysis, it is not possible to easily feed the interpolation scheme back with the discrepancies between observed and simulated discharges. Yet, despite having undergone the rainfall–runoff (or snow–runoff) transformation, discharge at the outlet of a (sub)catchment is still an interesting integrator (spatial low-pass filter) of the forcing fields and is ancillary areal information complementing the direct, point-scale data collected at gauges. In this perspective, choosing the best interpolation scheme partly becomes an inverse hydrological problem. Here, a joint calibration strategy is presented where the parameters of both the interpolation model (i.e., reconstruction procedure of meteorological forcings) and the hydrological model (snow cover, soil moisture accounting, and flow-routing schemes) are jointly inferred in a multisite and multivariable approach. Interpolated fields are daily rainfall and temperature, whereas hydrological variables consist of discharge and snow water equivalent time series at several locations in the Durance River catchment.

Corresponding author address: Nicolas Le Moine, UMR 7619 Metis, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris CEDEX 05, France. E-mail: nicolas.le_moine@upmc.fr

Abstract

Hydrological modeling in mountainous regions, where catchment hydrology is heavily influenced by snow (and possibly ice) processes, is a challenging task. The intrinsic complexity of local processes is added to the difficulty of estimating spatially distributed inputs such as precipitation and temperature, which often exhibit a high spatial heterogeneity that cannot be fully captured by measurement networks. Hence, an interpolation step is often required prior to the hydrological modeling step. Usually, the reconstruction of meteorological forcings and the calibration of the hydrological model are done sequentially. The outputs of the hydrological model (discharge estimates) may give some insight into the quality of the forcings used to feed it, but in this two-step independent analysis, it is not possible to easily feed the interpolation scheme back with the discrepancies between observed and simulated discharges. Yet, despite having undergone the rainfall–runoff (or snow–runoff) transformation, discharge at the outlet of a (sub)catchment is still an interesting integrator (spatial low-pass filter) of the forcing fields and is ancillary areal information complementing the direct, point-scale data collected at gauges. In this perspective, choosing the best interpolation scheme partly becomes an inverse hydrological problem. Here, a joint calibration strategy is presented where the parameters of both the interpolation model (i.e., reconstruction procedure of meteorological forcings) and the hydrological model (snow cover, soil moisture accounting, and flow-routing schemes) are jointly inferred in a multisite and multivariable approach. Interpolated fields are daily rainfall and temperature, whereas hydrological variables consist of discharge and snow water equivalent time series at several locations in the Durance River catchment.

Corresponding author address: Nicolas Le Moine, UMR 7619 Metis, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris CEDEX 05, France. E-mail: nicolas.le_moine@upmc.fr
Save