• Ashley, S. T., and Ashley W. S. , 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805818, doi:10.1175/2007JAMC1611.1.

    • Search Google Scholar
    • Export Citation
  • Baeck, M. L., and Smith J. A. , 1998: Rainfall estimation by the WSR-88D for heavy rainfall events. Wea. Forecasting, 13, 416436, doi:10.1175/1520-0434(1998)013<0416:REBTWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Booth, D. B., 1990: Stream-channel incision following drainage basin urbanization. J. Amer. Water Resour. Assoc., 26, 407417, doi:10.1111/j.1752-1688.1990.tb01380.x.

    • Search Google Scholar
    • Export Citation
  • Bradley, A. A., and Potter K. W. , 1992: Flood frequency analysis of simulated flows. Water Resour. Res., 28, 23752385, doi:10.1029/92WR01207.

    • Search Google Scholar
    • Export Citation
  • Buechter, M. T., and Weiland J. L. , 2006: Planes, drains, and automobiles: Design criteria for storm water drainage facilities at Lambert-St. Louis International Airport expansion. World Environmental and Water Resource Congress 2006, R. Graham, Ed., ASCE, 1–7, doi:10.1061/40856(200)386.

  • Burian, S., and Shepard J. , 2005: Effect of urbanization on the diurnal rainfall pattern in Houston. Hydrol. Processes, 19, 10891103, doi:10.1002/hyp.5647.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1979: Rainfall changes in summer caused by St. Louis. Science, 205, 402404, doi:10.1126/science.205.4404.402.

  • Changnon, S. A., and Westcott N. E. , 2002: Heavy rainstorms in Chicago: Increasing frequency, altered impacts, and future implications. J. Amer. Water Resour. Assoc., 38, 14671475, doi:10.1111/j.1752-1688.2002.tb04359.x.

    • Search Google Scholar
    • Export Citation
  • Criss, R., and Kusky T. , Eds., 2008: Finding the balance between floods, flood protection, and river navigation. Conf. Rep., St. Louis University, 89 pp.

  • Cummins, K. L., and Murphy M. J. , 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., Murphy M. J. , Bardo E. A. , Hiscox W. L. , Pyle R. B. , and Pifer A. E. , 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044, doi:10.1029/98JD00153.

    • Search Google Scholar
    • Export Citation
  • Denney, A., 2013: Redesigning River des Peres: To improve, protect, and maintain. M.S. thesis, Dept. of Landscape Architecture, Regional and Community Planning, Kansas State University, 150 pp.

  • Dixon, P. G., and Mote T. L. , 2003: Patterns and causes of Atlanta’s urban heat island initiated precipitation. J. Appl. Meteor. Climatol., 42, 12731284, doi:10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doll, B. A., Jenkins J. W. , Patterson J. M. , Coleman N. J. , Jennings G. D. , Buckner C. M. , and Mays D. B. , 2001: Urban stream restoration using a natural channel design approach. Wetlands Engineering and River Restoration 2001, D. F. Hayes, Ed., 1–7, doi:10.1061/40581(2001)2.

  • Doswell, C. A., Brooks H. E. , and Maddox R. A. , 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Falcone, J. A., 2011: GAGES-II: Geospatial attributes of gages for evaluating streamflow. USGS, accessed 4 September 2015. [Available online at http://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml.]

  • Falcone, J. A., Carlisle D. M. , Wolock D. M. , and Meador M. R. , 2010: GAGES: A stream gage database for evaluating natural and altered flow conditions in the conterminous United States. Ecology, 91, 621, doi:10.1890/09-0889.1.

    • Search Google Scholar
    • Export Citation
  • Ferguson, B. K., and Suckling P. W. , 1990: Changing rainfall–runoff relationships in the urbanizing Peachtree Creek watershed, Atlanta, Georgia. J. Amer. Water Resour. Assoc., 26, 313322, doi:10.1111/j.1752-1688.1990.tb01374.x.

    • Search Google Scholar
    • Export Citation
  • Fry, J., and Coauthors, 2011: Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sensing, 77, 858864.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and Coauthors, 2013: A unified flash flood database across the United States. Bull. Amer. Meteor. Soc., 94, 799805, doi:10.1175/BAMS-D-12-00198.1.

    • Search Google Scholar
    • Export Citation
  • Herget, J. E., 1978: Taming the environment: The Drainage District in Illinois. J. Ill. State Hist. Soc., 71 (2), 107118.

  • Hershfield, D., 1961: Rainfall frequency atlas of the United States. Tech. Paper 40, Weather Bureau, 61 pp. [Available online at http://www.nws.noaa.gov/oh/hdsc/PF_documents/TechnicalPaper_No40.pdf.]

  • Hollis, G. E., 1975: The effect of urbanization on floods of different recurrence intervals. Water Resour. Res., 11, 431435, doi:10.1029/WR011i003p00431.

    • Search Google Scholar
    • Export Citation
  • Huff, F. A., and Changnon S. A. , 1973: Precipitation modification by major urban areas. Bull. Amer. Meteor. Soc., 54, 12201232, doi:10.1175/1520-0477(1973)054<1220:PMBMUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., Feuer S. , Hagen A. , Glenn D. A. , Anderson N. T. , Sims J. , Perez R. , and Chenoweth M. , 2004: The Atlantic Hurricane Database Re-Analysis Project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Leopold, L. B., 1968: Hydrology for urban planning—A guidebook on the hydrologic effects of urban land use. Geological Survey Circular 554, USGS, 18 pp. [Available online at http://pubs.usgs.gov/circ/1968/0554/report.pdf.]

  • Leung, L. R., Qian Y. , Bian X. , Washington W. M. , Han J. , and Roads J. O. , 2004: Mid-century ensemble regional climate change scenarios for the western United States. Climatic Change, 62, 75113, doi:10.1023/B:CLIM.0000013692.50640.55.

    • Search Google Scholar
    • Export Citation
  • Lindner, G. A., and Miller A. J. , 2012: Numerical modeling of stage–discharge relationships in urban streams. J. Hydrol. Eng., 17, 590597, doi:10.1061/(ASCE)HE.1943-5584.0000459.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., Chappell C. F. , and Hoxit L. R. , 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Search Google Scholar
    • Export Citation
  • Martens, L. A., 1968: Flood inundation and effects of urbanization in North Carolina. USGS Water Supply Paper 1591-C, 60 pp. [Available online at http://pubs.usgs.gov/wsp/1591c/report.pdf.]

  • Meierdiercks, K. L., Smith J. A. , Baeck M. L. , and Miller A. J. , 2010a: Analysis of urban drainage network structure and its impact on hydrologic response. J. Amer. Water Resour. Assoc., 46, 932943, doi:10.1111/j.1752-1688.2010.00465.x.

    • Search Google Scholar
    • Export Citation
  • Meierdiercks, K. L., Smith J. A. , Baeck M. L. , and Miller A. J. , 2010b: Heterogeneity of hydrologic response in urban watersheds. J. Amer. Water Resour. Assoc., 46, 12211237, doi:10.1111/j.1752-1688.2010.00487.x.

    • Search Google Scholar
    • Export Citation
  • Michaud, J., Hirschboeck K. , and Winchell M. , 2001: Regional variations in small-basin floods in the United States. Water Resour. Res., 37, 14051416, doi:10.1029/2000WR900283.

    • Search Google Scholar
    • Export Citation
  • Miller, P. S., and Loucks E. , 1999: Detention basin release rate determination for urbanizing watersheds in St. Louis County, Missouri. WRPMD'99: Preparing for the 21st Century, E. M. Wilson, Ed., ASCE, 1–9, doi:10.1061/40430(1999)14.

  • Milly, P. C. D., Wetherald R. T. , Dunne K. A. , and Delworth T. L. , 2002: Increasing risk of great floods in a changing climate. Nature, 415, 514517, doi:10.1038/415514a.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., Pyle P. , Lei M. , Arya S. , Kishtawal C. , Shepard J. , Chen F. , and Wolfe B. , 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, doi:10.1175/2010JAMC1836.1.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., Smith J. A. , and Krajewski W. F. , 2007: Climatological analyses of thunderstorms and flash floods in the Baltimore metropolitan region. J. Hydrometeor., 8, 88101, doi:10.1175/JHM558.1.

    • Search Google Scholar
    • Export Citation
  • O’Connor, J. E., and Costa J. E. , 2004: Spatial distribution of the largest rainfall–runoff floods from basins between 2.6 and 26,000 km2 in the United States and Puerto Rico. Water Resour. Res., 40, W01107, doi:10.1029/2003WR002247.

    • Search Google Scholar
    • Export Citation
  • Ogden, F. L., Pradhan N. R. , Downer C. W. , and Zahner J. A. , 2011: Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour. Res., 47, W12503, doi:10.1029/2011WR010550.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 2008: Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc., 89, 180190, doi:10.1175/BAMS-89-2-180.

    • Search Google Scholar
    • Export Citation
  • Paul, M. J., and Meyer J. L. , 2001: Streams in the urban landscape. Annu. Rev. Ecol. Syst., 32, 333365, doi:10.1146/annurev.ecolsys.32.081501.114040.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., Downton M. , and Miller J. B. , 2002: Flood damage in the United States, 1926–2000: A reanalysis of National Weather Service estimates. Tech. Rep., UCAR, Boulder, CO, 86 pp.

  • Potter, K. W., and Walker J. F. , 1985: An empirical study of flood measurement error. Water Resour. Res., 21, 403406, doi:10.1029/WR021i003p00403.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of the current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, doi:10.1175/EI156.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., Pierce H. , and Negri A. J. , 2002: Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteor., 41, 689701, doi:10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, B. K., Smith J. A. , Baeck M. L. , Villarini G. , and Wright D. B. , 2013: Spectrum of storm event hydrologic response in urban watersheds. Water Resour. Res., 49, 26492663, doi:10.1002/wrcr.20223.

    • Search Google Scholar
    • Export Citation
  • Smith, B. K., Smith J. A. , Baeck M. L. , and Miller A. , 2015: Exploring storage and runoff generation processes for urban flooding through a physically based watershed model. Water Resour. Res., 51, 15521569, doi:10.1002/2014WR016085.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Baeck M. L. , Morrison J. E. , Sturdevant-Rees P. , Turner-Gillespie D. F. , and Bates P. D. , 2002: The regional hydrology of extreme floods in an urbanizing drainage basin. J. Hydrometeor., 3, 267282, doi:10.1175/1525-7541(2002)003<0267:TRHOEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Baeck M. L. , Meierdiercks K. L. , Nelson P. A. , Miller A. J. , and Holland E. J. , 2005a: Field studies of the storm event hydrologic response in an urbanizing watershed. Water Resour. Res., 41, W10413, doi:10.1029/2004WR003712.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Miller A. J. , Baeck M. L. , Nelson P. A. , Fisher G. T. , and Meierdiercks K. L. , 2005b: Extraordinary flood response of a small urban watershed to short duration convective rainfall. J. Hydrometeor., 6, 599617, doi:10.1175/JHM426.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Sturdevant-Rees P. , Baeck M. L. , and Larsen M. C. , 2005c: Tropical cyclones and the flood hydrology of Puerto Rico. Water Resour. Res., 41, W06020, doi:10.1029/2004WR003530.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Villarini G. , and Baeck M. L. , 2011: Mixture distributions and the hydroclimatology of extreme rainfall and flooding in the eastern United States. J. Hydrometeor., 12, 294309, doi:10.1175/2010JHM1242.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Baeck M. L. , Villarini G. , Welty C. , Miller A. J. , and Krajewski W. F. , 2012: Analysis of a long-term, high-resolution radar rainfall data set for the Baltimore metropolitan area. Water Resour. Res., 48, W04504, doi:10.1029/2011WR010641.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Smith J. A. , 2010: Flood peak distributions for the eastern United States. Water Resour. Res., 46, W06504, doi:10.1029/2009WR008395.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Smith J. A. , Serinaldi F. , Bales J. , Bates P. D. , and Krajewski W. F. , 2009: Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv. Water Resour., 32, 12551266, doi:10.1016/j.advwatres.2009.05.003.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Smith J. A. , Baeck M. L. , Sturdevant-Rees P. , and Krajewski W. F. , 2010: Radar analyses of extreme rainfall and flooding in urban drainage basins. J. Hydrol., 381, 266286, doi:10.1016/j.jhydrol.2009.11.048.

    • Search Google Scholar
    • Export Citation
  • Wang, Q. J., 1991: The POT model described by the generalized Pareto distribution with Poisson arrival rate. J. Hydrol., 129, 263280, doi:10.1016/0022-1694(91)90054-L.

    • Search Google Scholar
    • Export Citation
  • Wright, D. B., Smith J. A. , Villarini G. , and Baeck M. L. , 2012: The hydroclimatology of flash flooding in Atlanta. Water Resour. Res., 48, W04524, doi:10.1029/2011WR011371.

    • Search Google Scholar
    • Export Citation
  • Wright, D. B., Smith J. A. , Villarini G. , and Baeck M. L. , 2014: Long-term high-resolution radar rainfall fields for urban hydrology. J. Amer. Water Resour. Assoc., 50, 713734, doi:10.1111/jawr.12139.

    • Search Google Scholar
    • Export Citation
  • Yang, L., Smith J. A. , Wright D. B. , Baeck M. L. , and Villarini G. , 2013: Urbanization and climate change: An examination of nonstationarities in urban flooding. J. Hydrometeor., 14, 17911809, doi:10.1175/JHM-D-12-095.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 452 207 31
PDF Downloads 371 153 9

The Flashiest Watersheds in the Contiguous United States

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
Restricted access

Abstract

The authors identify the flashiest watersheds in the contiguous United States based on frequency of discharge peaks exceeding 1 m3 s−1 km−2. The entire digitized record of USGS instantaneous discharge data is used for all stream gauging stations with over 10 years of data. Using the 1 m3 s−1 km−2 threshold, the flashiest basins in the contiguous United States are located in urban areas along a swath of states from the south-central United States to the mid-Atlantic and in mountainous areas of the West Coast, especially the Pacific Northwest. The authors focus on small watersheds to identify the flashiest cities and states across the country and find Tulsa, Oklahoma; Baltimore, Maryland; and St. Louis, Missouri, to be the flashiest cities in the contiguous United States. Thunderstorms are major agents for peak-over-threshold flood events east of the Rocky Mountains, and tropical cyclones play a secondary role, especially in the Southeast. West Coast flood events are associated with winter storms. Flooding west of and within the Rockies is linked to steeply sloped terrain and compact watersheds. East of the Rockies, urban areas dominate flashy watersheds. The authors find that watersheds northeast (downwind) of city centers are flashier than other urban watersheds, consistent with the downwind maximum in rainfall found in many urban regions. They examine anomalous flood response in the Illinois–Missouri region; St. Louis is among the flashiest cities in the United States, while Chicago is among the least flashy. Their flashiness map is compared with other measures of flooding, including flood damage and National Weather Service flash flood reports.

Current affiliation: Department of Earth and Environmental Sciences, Brooklyn College, Brooklyn, New York.

Corresponding author address: Brianne Smith, Department of Earth and Environmental Sciences, Brooklyn College of the City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210. E-mail: brianne.smith43@brooklyn.cuny.edu

Abstract

The authors identify the flashiest watersheds in the contiguous United States based on frequency of discharge peaks exceeding 1 m3 s−1 km−2. The entire digitized record of USGS instantaneous discharge data is used for all stream gauging stations with over 10 years of data. Using the 1 m3 s−1 km−2 threshold, the flashiest basins in the contiguous United States are located in urban areas along a swath of states from the south-central United States to the mid-Atlantic and in mountainous areas of the West Coast, especially the Pacific Northwest. The authors focus on small watersheds to identify the flashiest cities and states across the country and find Tulsa, Oklahoma; Baltimore, Maryland; and St. Louis, Missouri, to be the flashiest cities in the contiguous United States. Thunderstorms are major agents for peak-over-threshold flood events east of the Rocky Mountains, and tropical cyclones play a secondary role, especially in the Southeast. West Coast flood events are associated with winter storms. Flooding west of and within the Rockies is linked to steeply sloped terrain and compact watersheds. East of the Rockies, urban areas dominate flashy watersheds. The authors find that watersheds northeast (downwind) of city centers are flashier than other urban watersheds, consistent with the downwind maximum in rainfall found in many urban regions. They examine anomalous flood response in the Illinois–Missouri region; St. Louis is among the flashiest cities in the United States, while Chicago is among the least flashy. Their flashiness map is compared with other measures of flooding, including flood damage and National Weather Service flash flood reports.

Current affiliation: Department of Earth and Environmental Sciences, Brooklyn College, Brooklyn, New York.

Corresponding author address: Brianne Smith, Department of Earth and Environmental Sciences, Brooklyn College of the City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210. E-mail: brianne.smith43@brooklyn.cuny.edu
Save