• Brown, M. E., Funk C. C. , Galu G. , and Choularton R. , 2007: Earlier famine warning possible using remote sensing and models. Eos, Trans. Amer. Geophys. Union, 88, 381382, doi:10.1029/2007EO390001.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Yang K. , Qin J. , Zhao L. , Tang W. , and Han M. , 2013: Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos., 118, 44664475, doi:10.1002/jgrd.50301.

    • Search Google Scholar
    • Export Citation
  • Decker, M., Brunke M. A. , Wang Z. , Sakaguchi K. , Zeng X. , and Bosilovich M. G. , 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 19161944, doi:10.1175/JCLI-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., de Jeu R. , Chung D. , Parinussa R. , Liu Y. , Wagner W. , and Fernández-Prieto D. , 2012: Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett., 39, L18405, doi:10.1029/2012GL052988.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2013: Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J., 12, doi:10.2136/vzj2012.0097.

    • Search Google Scholar
    • Export Citation
  • Durre, I., Menne M. J. , Gleason B. E. , Houston T. G. , and Vose R. S. , 2010: Comprehensive automated quality control of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, doi:10.1175/2010JAMC2375.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, V. G., Andam-Akorful S. A. , He X. , and Xiao R. , 2014: Estimating water storage changes and sink terms in Volta basin from satellite missions. Water Sci. Eng., 7, 516, doi:10.3882/j.issn.1674-2370.2014.01.002.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., Cuo L. , and Zhang Y. , 2014: Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J. Climate, 27, 18761893, doi:10.1175/JCLI-D-13-00321.1.

    • Search Google Scholar
    • Export Citation
  • Ghazanfari, S., Pande S. , Hashemy M. , and Sonneveld B. , 2013: Diagnosis of GLDAS LSM based aridity index and dryland identification. J. Environ. Manage., 119, 162172, doi:10.1016/j.jenvman.2013.01.040.

    • Search Google Scholar
    • Export Citation
  • Hassan, A. A., and Jin S. , 2014: Lake level change and total water discharge in East Africa Rift Valley from satellite-based observations. Global Planet. Change, 117, 7990, doi:10.1016/j.gloplacha.2014.03.005.

    • Search Google Scholar
    • Export Citation
  • Henry, C. M., Allen D. M. , and Huang J. , 2011: Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeol. J., 19, 741755, doi:10.1007/s10040-011-0724-3.

    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, doi:10.1029/2010JD014545.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S.-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Krause, P., Boyle D. P. , and Bäse F. , 2005: Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci., 5, 8997, doi:10.5194/adgeo-5-89-2005.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and McCabe G. J. Jr., 1999: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35, 233241, doi:10.1029/1998WR900018.

    • Search Google Scholar
    • Export Citation
  • Liu, D., Wang G. , Mei R. , Yu Z. , and Gu H. , 2014: Diagnosing the strength of land–atmosphere coupling at subseasonal to seasonal time scales in Asia. J. Hydrometeor., 15, 320339, doi:10.1175/JHM-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., Dorigo W. A. , Parinussa R. M. , de Jeu R. A. M. , Wagner W. , McCabe M. F. , Evans J. P. , and van Dijk A. I. J. M. , 2012: Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ., 123, 280297, doi:10.1016/j.rse.2012.03.014.

    • Search Google Scholar
    • Export Citation
  • Long, D., Scanlon B. R. , Longuevergne L. , Sun A. Y. , Fernando D. N. , and Save H. , 2013: GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett., 40, 33953401, doi:10.1002/grl.50655.

    • Search Google Scholar
    • Export Citation
  • Meng, J., Yang R. , Wei H. , Ek M. , Gayno G. , Xie P. , and Mitchell K. , 2012: The land surface analysis in the NCEP climate forecast system reanalysis. J. Hydrometeor., 13, 16211630, doi:10.1175/JHM-D-11-090.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., Durre I. , Vose R. S. , Gleason B. E. , and Houston T. G. , 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Moiwo, J. P., Yang Y. , Tao F. , Lu W. , and Han S. , 2011: Water storage change in the Himalayas from the Gravity Recovery and Climate Experiment (GRACE) and an empirical climate model. Water Resour. Res., 47, W07521, doi:10.1029/2010WR010157.

    • Search Google Scholar
    • Export Citation
  • Moriasi, D. N., Arnold J. G. , Van Liew M. W. , Bingner R. L. , Harmel R. D. , and Veith T. L. , 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Proulx, R. A., Knudson M. D. , Kirilenko A. , Vanlooy J. A. , and Zhang X. , 2013: Significance of surface water in the terrestrial water budget: A case study in the Prairie Coteau using GRACE, GLDAS, Landsat, and groundwater well data. Water Resour. Res., 49, 57565764, doi:10.1002/wrcr.20455.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Chen J. , Kato H. , Famiglietti J. S. , Nigro J. , and Wilson C. R. , 2007: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J., 15, 159166, doi:10.1007/s10040-006-0103-7.

    • Search Google Scholar
    • Export Citation
  • Romaguera, M., Krol M. S. , Salama M. S. , Hoekstra A. Y. , and Su Z. , 2012: Determining irrigated areas and quantifying blue water use in Europe using remote sensing Meteosat Second Generation (MSG) products and Global Land Data Assimilation System (GLDAS) Data. Photogramm. Eng. Remote Sensing, 78, 861873, doi:10.14358/PERS.78.8.861.

    • Search Google Scholar
    • Export Citation
  • Rui, H., 2011: README document for Global Land Data Assimilation System version 1 (GLDAS-1) products. NASA GSFC, 34 pp. [Available online at ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS_V1/README.GLDAS.pdf.]

  • Rui, H., and Beaudoing H. , 2015: README document for Global Land Data Assimilation System version 2 (GLDAS-2) products. NASA GES DISC, 23 pp. [Available online at ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS/README.GLDAS2.pdf.]

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Senay, G. B., Bohms S. , Singh R. K. , Gowda P. H. , Velpuri N. M. , Alemu H. , and Verdin J. P. , 2013: Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. J. Amer. Water Resour. Assoc., 49, 577591, doi:10.1111/jawr.12057.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., and Wahr J. , 2006: Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements. J. Hydrometeor., 7, 252270, doi:10.1175/JHM478.1.

    • Search Google Scholar
    • Export Citation
  • Syed, T. H., Famiglietti J. S. , Rodell M. , Chen J. , and Wilson C. R. , 2008: Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44, W02433, doi:10.1029/2006WR005779.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., Running S. W. , and White M. A. , 1997: Generating surfaces of daily meteorology variables over large regions of complex terrain. J. Hydrol., 190, 214251, doi:10.1016/S0022-1694(96)03128-9.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., Thornton M. M. , Mayer B. W. , Wilhelmi N. , Wei Y. , Devarakonda R. , and Cook R. B. , 2014: Daymet: Daily surface weather on a 1 km grid for North America, version 2, 1980–2012. ORNL Distributed Active Archive Center, accessed 16 July 2013, doi:10.3334/ORNLDAAC/Daymet_V2.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • U.S. Geological Survey, 2005: Elevation derivatives for national applications. USGS Fact Sheet 2005-3049, 2 pp. [Available online at https://store.usgs.gov/yimages/PDF/FS_2005_3049.pdf.]

  • Verdin, J., Funk C. , Senay G. , and Choularton R. , 2005: Climate science and famine early warning. Philos. Trans. R. Soc. London, B360, 21552168, doi:10.1098/rstb.2005.1754.

    • Search Google Scholar
    • Export Citation
  • Wang, A., and Zeng X. , 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, doi:10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wang, F., Wang L. , Koike T. , Zhou H. , Yang K. , Wang A. , and Li W. , 2011: Evaluation and application of a fine-resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model. J. Geophys. Res., 116, D21108, doi:10.1029/2011JD015990.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184194, doi:10.1080/02723646.1981.10642213.

  • Xue, B.-L., Wang L. , Li X. , Yang K. , Chen D. , and Sun L. , 2013: Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J. Hydrol., 492, 290297, doi:10.1016/j.jhydrol.2013.04.005.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., Rodell M. , and Olivera F. , 2010: Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Resour. Res., 46, W06507, doi:10.1029/2009WR007811.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Wang W.-C. , and Wei J. , 2008: Assessing land–atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res., 113, D17119, doi:10.1029/2008JD009807.

    • Search Google Scholar
    • Export Citation
  • Zhong, L., Su Z. , Ma Y. , Salama M. S. , and Sobrino J. A. , 2011: Accelerated changes of environmental conditions on the Tibetan Plateau caused by climate change. J. Climate, 24, 65406550, doi:10.1175/JCLI-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 845 522 32
PDF Downloads 764 415 26

Evaluation of the Global Land Data Assimilation System (GLDAS) Air Temperature Data Products

View More View Less
  • 1 ASRC Federal InuTeq at Earth Resources Observation and Science Center, U.S. Geological Survey, Sioux Falls, South Dakota
  • | 2 Earth Resources Observation and Science Center, U.S. Geological Survey, Sioux Falls, South Dakota
Restricted access

Abstract

There is a high demand for agrohydrologic models to use gridded near-surface air temperature data as the model input for estimating regional and global water budgets and cycles. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global scale. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, the daily 0.25° resolution GLDAS air temperature data are compared with two reference datasets: 1) 1-km-resolution gridded Daymet data (2002 and 2010) for the conterminous United States and 2) global meteorological observations (2000–11) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets, including 13 511 weather stations, indicates a fairly high accuracy of the GLDAS data for daily temperature. The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accuracy. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. The evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but caution should be taken when the data are used in mountainous areas or places with sparse weather stations.

Corresponding author address: Lei Ji, Earth Resources Observation and Science Center, U.S. Geological Survey, 47914 252nd St., Sioux Falls, SD 57198-0001. E-mail: lji@usgs.gov

Abstract

There is a high demand for agrohydrologic models to use gridded near-surface air temperature data as the model input for estimating regional and global water budgets and cycles. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global scale. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, the daily 0.25° resolution GLDAS air temperature data are compared with two reference datasets: 1) 1-km-resolution gridded Daymet data (2002 and 2010) for the conterminous United States and 2) global meteorological observations (2000–11) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets, including 13 511 weather stations, indicates a fairly high accuracy of the GLDAS data for daily temperature. The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accuracy. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. The evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but caution should be taken when the data are used in mountainous areas or places with sparse weather stations.

Corresponding author address: Lei Ji, Earth Resources Observation and Science Center, U.S. Geological Survey, 47914 252nd St., Sioux Falls, SD 57198-0001. E-mail: lji@usgs.gov
Save