• Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aizen, V. B., Aizen E. M. , Surazakov A. B. , and Kuzmichenok V. A. , 2006: Assessment of glacial area and volume change in Tien Shan (central Asia) during the last 150 years using geodetic, aerial photo, ASTER and SRTM data. Ann. Glaciol., 43, 202213, doi:10.3189/172756406781812465.

    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Search Google Scholar
    • Export Citation
  • Blandford, T. R., Humes K. S. , Harshburger B. J. , Moore B. C. , Walden V. P. , and Ye H. , 2008: Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin. J. Appl. Meteor. Climatol., 47, 249261, doi:10.1175/2007JAMC1565.1.

    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., Livneh B. , Oyler J. W. , Running S. W. , Nijssen B. , and Lettenmaier D. P. , 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. For. Meteor., 176, 3849, doi:10.1016/j.agrformet.2013.03.003.

    • Search Google Scholar
    • Export Citation
  • Bolch, T., 2007: Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global Planet. Change, 56, 112, doi:10.1016/j.gloplacha.2006.07.009.

    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., Pomeroy J. W. , and Lettenmaier D. P. , 2004: Parameterization of blowing-snow sublimation in a macroscale hydrology model. J. Hydrometeor., 5, 745762, doi:10.1175/1525-7541(2004)005<0745:POBSIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bras, R. A., 1990: Hydrology: An Introduction to Hydrologic Science. Addison-Wesley, 643 pp.

  • Braun, L. N., Weber M. , and Schulz M. , 2000: Consequences of climate change for runoff from Alpine regions. Ann. Glaciol., 31, 1925, doi:10.3189/172756400781820165.

    • Search Google Scholar
    • Export Citation
  • Chen, Y. N., Takeuchi K. , Xu C. C. , Chen Y. P. , and Xu Z. X. , 2006: Regional climate change and its effects on river runoff in the Tarim basin, China. Hydrol. Processes, 20, 22072216, doi:10.1002/hyp.6200.

    • Search Google Scholar
    • Export Citation
  • Chen, Y. N., Hao X. M. , and Xu C. C. , 2007: The trend analysis of runoff change of Tarim River basin, Xin Jiang (in Chinese). Prog. Nat. Sci., 17, 205210.

    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., and Lettenmaier D. P. , 1999: Hydrologic effects of frozen soils in the upper Mississippi River basin. J. Geophys. Res., 104, 19 59919 610, doi:10.1029/1999JD900337.

    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., and Lettenmaier D. P. , 2003: Simulation of spatial variability in snow and frozen soil. J. Geophys. Res., 108, 8858, doi:10.1029/2003JD003575.

    • Search Google Scholar
    • Export Citation
  • Costa-Cabral, M. C., Richey J. E. , Goteti G. , Lettenmaier D. P. , Feldkötter C. , and Snidvongs A. , 2008: Landscape structure and use, climate, and water movement in the Mekong River basin. Hydrol. Processes, 22, 17311746, doi:10.1002/hyp.6740.

    • Search Google Scholar
    • Export Citation
  • Cui, Y., Ye B. , Wang J. , Liu Y. , and Jing Z. , 2010: Analysis of the spatial–temporal variations of the positive degree-day factors on the glacier No. 1 at the headwaters of the Urümqi River (in Chinese). J. Glaciol. Geocryology, 32, 265274.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Fekete, B. M., and Vorosmarty C. J. , 2004: Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17, 294304, doi:10.1175/1520-0442(2004)017<0294:UIPATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, H. K., He X. B. , Ye B. S. , and Pu J. C. , 2012: Modeling the runoff and glacier mass balance in a small watershed on the central Tibetan Plateau, China, from 1955 to 2008. Hydrol. Processes, 26, 15931603, doi:10.1002/hyp.8256.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Ye B. S. , Zhang S. Q. , Qiao C. J. , and Zhang X. W. , 2010: Glacier runoff variation and its influence on river runoff during 1961–2006 in the Tarim River basin, China. Sci. China Earth Sci., 53, 880891, doi:10.1007/s11430-010-0073-4.

    • Search Google Scholar
    • Export Citation
  • Global Soil Data Task Group, 2000: Global gridded surfaces of selected soil characteristics (IGBP-DIS) data set. Oak Ridge National Laboratory Distributed Active Archive Center, accessed 15 October 2013, doi:10.3334/ORNLDAAC/569.

  • Hagg, W., Braun L. N. , Kuhn M. , and Nesgaard T. I. , 2007: Modelling of hydrological response to climate change in glacierized central Asian catchments. J. Hydrol., 332, 4053, doi:10.1016/j.jhydrol.2006.06.021.

    • Search Google Scholar
    • Export Citation
  • Hagg, W., Mayer C. , Lambrecht A. , and Helm A. , 2008: Sub-debris melt rates on southern Inylchek Glacier, central Tian Shan. Geogr. Ann., Ser. A, 90, 5563, doi:10.1111/j.1468-0459.2008.00333.x.

    • Search Google Scholar
    • Export Citation
  • Han, H. D., Wang J. , Wang X. , and Zhang P. F. , 2009: Study of the positive degree-day factor of ice cliff ablation in debris-covered area of the Koxkar Glacier (in Chinese). J. Glaciol. Geocryology, 31, 620627.

    • Search Google Scholar
    • Export Citation
  • Han, Z. Y., and Zhou T. J. , 2012: Assessing the quality of APHRODITE high-resolution daily precipitation dataset over contiguous China (in Chinese). Chin. J. Atmos. Sci., 36, 361373.

    • Search Google Scholar
    • Export Citation
  • Hansen, M., DeFries R. , Townshend J. R. G. , and Sohlberg R. , 1998: UMD Global Land Cover Classification, 1 kilometer, version 1.0. Department of Geography, University of Maryland, College Park, accessed 10 October, 2013. [Available online at http://glcf.umd.edu/data/landcover/.]

  • Hock, R., 2003: Temperature index melt modelling in mountain areas. J. Hydrol., 282, 104115, doi:10.1016/S0022-1694(03)00257-9.

  • Hock, R., 2005: Glacier melt: A review of processes and their modelling. Prog. Phys. Geogr., 29, 362391, doi:10.1191/0309133305pp453ra.

    • Search Google Scholar
    • Export Citation
  • Hock, R., and Holmgren B. , 2005: A distributed surface energy-balance model for complex topography and its application to Storglaciaren, Sweden. J. Glaciol., 51, 2536, doi:10.3189/172756505781829566.

    • Search Google Scholar
    • Export Citation
  • Hock, R., Jansson P. , and Braun L. , 2005: Modelling the response of mountain glacier discharge to climate warming. Global Change and Mountain Regions, M. A. Reasoner, Ed., Advances in Global Change Research, Vol. 23, Springer, 243–252, doi:10.1007/1-4020-3508-X_25.

  • Hu, Y. J., 2004: Physical Geography of the Tianshan Mountains in China (in Chinese). China Environmental Science Press, 443 pp.

  • Huang, M. Y., and Liang X. , 2006: On the assessment of the impact of reducing parameters and identification of parameter uncertainties for a hydrologic model with applications to ungauged basins. J. Hydrol., 320, 3761, doi:10.1016/j.jhydrol.2005.07.010.

    • Search Google Scholar
    • Export Citation
  • Huss, M., Farinotti D. , Bauder A. , and Funk M. , 2008: Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol. Processes, 22, 38883902, doi:10.1002/hyp.7055.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., Van Beek L. P. H. , and Bierkens M. F. P. , 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, doi:10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., Van Beek L. P. H. , Konz M. , Shrestha A. B. , and Bierkens M. F. P. , 2012: Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110, 721736, doi:10.1007/s10584-011-0143-4.

    • Search Google Scholar
    • Export Citation
  • Iversen, T., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 2: Climate response and scenario projections. Geosci. Model Dev., 6, 389415, doi:10.5194/gmd-6-389-2013.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., Wang N. L. , He J. Q. , Wu X. B. , and Song G. J. , 2010: A distributed surface energy and mass balance model and its application to a mountain glacier in China. Chin. Sci. Bull., 55, 20792087, doi:10.1007/s11434-010-3068-9.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., Zhou C. H. , and Cheng W. M. , 2005: Analysis on runoff supply and variation characteristics of Aksu drainage basin (in Chinese). J. Nat. Resour., 20, 2734.

    • Search Google Scholar
    • Export Citation
  • Kang, E., Cheng G. , Lan Y. , and Jin H. , 1999: A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes. Sci. China Series D, 42, 5263, doi:10.1007/BF02878853.

    • Search Google Scholar
    • Export Citation
  • Kattel, D. B., Yao T. , Yang K. , Tian L. , Yang G. , and Joswiak D. , 2013: Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theor. Appl. Climatol., 113, 671682, doi:10.1007/s00704-012-0816-6.

    • Search Google Scholar
    • Export Citation
  • Klok, E. J., Jasper K. , Roelofsma K. P. , Gurtz J. , and Badoux A. , 2001: Distributed hydrological modelling of a heavily glaciated Alpine river basin. Hydrol. Sci. J., 46, 553570, doi:10.1080/02626660109492850.

    • Search Google Scholar
    • Export Citation
  • Kotlyakov, V. M., and Severskiy I. V. , 2009: Glaciers of central Asia: Current situation, changes and possible impact on water resources. Assess. Snow Glacier Water Resour. Asia, 8, 3643.

    • Search Google Scholar
    • Export Citation
  • Lang, H., 1986: Forecasting meltwater runoff from snow-covered areas and from glacier basins. River Flow Modelling and Forecasting, D. A. Kraijenhoff and J. R. Moll, Eds., Water Science and Technology Library, Vol. 3, D. Reidel, 99–127.

    • Search Google Scholar
    • Export Citation
  • Li, J., Liu S. Y. , Han H. D. , Zhang Y. , Wang J. , and Wei J. F. , 2012: Evaluation of runoff from Koxkar Glacier basin, Tianshan Mountains, China (in Chinese). Adv. Climate Change Res., 8, 350356.

    • Search Google Scholar
    • Export Citation
  • Li, X. Y., 2010: Economical evaluation on the agricultural water-save irrigation technology in arid areas of Xinjiang (in Chinese). M.S. thesis, Xinjiang Agricultural University, 56 pp.

  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , and Wood E. F. , 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101, 21 40321 422, doi:10.1029/96JD01448.

    • Search Google Scholar
    • Export Citation
  • Liu, C. H., 1995: Glacier resources and distributive characteristics in the central Asia Tianshan Mountains (in Chinese). J. Glaciol. Geocryology, 17, 193203.

    • Search Google Scholar
    • Export Citation
  • Liu, S. Y., Ding Y. J. , and Ye B. S. , 1996: Study on the mass balance of the glacier No.1 at the headwaters of the Urumqi River using degree-day method (in Chinese). Proceedings of the Fifth Chinese Conference on Glaciology and Geocryology, Gansu Culture Press, 197204.

  • Liu, S. Y., Sun W. X. , Shen Y. P. , and Li G. , 2003: Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply. J. Glaciol., 49, 117124, doi:10.3189/172756503781830926.

    • Search Google Scholar
    • Export Citation
  • Liu, S. Y., and Coauthors, 2006: Glacier retreat as a result of climate warming and increased precipitation in the Tarim River basin, northwest China. Ann. Glaciol., 43, 9196, doi:10.3189/172756406781812168.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. H., Feng J. M. , and Ma Z. G. , 2014: An analysis of historical and future temperature fluctuations over China based on CMIP5 simulations. Adv. Atmos. Sci., 31, 457467, doi:10.1007/s00376-013-3093-0.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Raschke E. , Nijssen B. , and Lettenmaier D. P. , 1998a: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43, 131141, doi:10.1080/02626669809492107.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Raschke E. , Nijssen B. , and Lettenmaier D. P. , 1998b: Regional scale hydrology: II. Application of the VIC-2L model to the Weser River, Germany. Hydrol. Sci. J., 43, 143158, doi:10.1080/02626669809492108.

    • Search Google Scholar
    • Export Citation
  • Malone, E. L., 2010: Changing glaciers and hydrology in Asia: Addressing vulnerabilities to glacier melt impacts. USAID Doc., United States Agency for International Development, 119 pp. [Available online at http://pdf.usaid.gov/pdf_docs/Pnadu628.pdf.]

  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Mokhov, I. I., and Akperov M. G. , 2006: Tropospheric lapse rate and its relation to surface temperature from reanalysis data. Izv., Atmos. Ocean. Phys., 42, 430438, doi:10.1134/S0001433806040037.

    • Search Google Scholar
    • Export Citation
  • Nakawo, M., and Rana B. , 1999: Estimate of ablation rate of glacier ice under a supraglacial debris layer. Geogr. Ann., Ser. A, 81, 695701, doi:10.1111/j.0435-3676.1999.00097.x.

    • Search Google Scholar
    • Export Citation
  • Narama, C., Kaab A. , Duishonakunov M. , and Abdrakhmatov K. , 2010: Spatial variability of recent glacier area changes in the Tien Shan Mountains, central Asia, using Corona (similar to 1970), Landsat (similar to 2000), and ALOS (similar to 2007) satellite data. Global Planet. Change, 71, 4254, doi:10.1016/j.gloplacha.2009.08.002.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I: A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., Schnur R. , and Lettenmaier D. P. , 2001: Global retrospective estimation of soil moisture using the Variable Infiltration Capacity land surface model, 1980–93. J. Climate, 14, 17901808, doi:10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Østrem, G., 1959: Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr. Ann., 41, 228230.

    • Search Google Scholar
    • Export Citation
  • Piao, S. L., and Coauthors, 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467, 4351, doi:10.1038/nature09364.

    • Search Google Scholar
    • Export Citation
  • Pieczonka, T., Bolch T. , Junfeng W. , and Liu S. Y. , 2013: Heterogeneous mass loss of glaciers in the Aksu–Tarim catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens. Environ., 130, 233244, doi:10.1016/j.rse.2012.11.020.

    • Search Google Scholar
    • Export Citation
  • Pielke, S. R., and Wilby R. L. , 2012: Regional climate downscaling: What’s the point? Eos, Trans. Amer. Geophys. Union, 93, 5253, doi:10.1029/2012EO050008.

    • Search Google Scholar
    • Export Citation
  • Popovnin, V. V., and Rozova A. V. , 2002: Influence of sub-debris thawing on ablation and runoff of the Djankuat Glacier in the Caucasus. Nord. Hydrol., 33, 7594.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Carmaichael G. , 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221227, doi:10.1038/ngeo156.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., Andreas B. , Udo S. , Anja M. C. , and Markus Z. , 2010: The new “GPCC Full Data Reanalysis Version 5” providing high-quality gridded monthly precipitation data for the global land-surface is public available since December 2010. GPCC Status Rep., GPCC, 7 pp.

  • Schaefli, B., and Huss M. , 2011: Integrating point glacier mass balance observations into hydrologic model identification. Hydrol. Earth Syst. Sci., 15, 12271241, doi:10.5194/hess-15-1227-2011.

    • Search Google Scholar
    • Export Citation
  • Shangguan, D., Liu S. Y. , Ding Y. J. , Ding L. F. , Xu J. L. , and Jing L. , 2009: Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Prog. Nat. Sci., 19, 727732, doi:10.1016/j.pnsc.2008.11.002.

    • Search Google Scholar
    • Export Citation
  • Shen, Y. P., Wang G. Y. , Ding Y. J. , Mao W. Y. , Liu S. Y. , Wang S. D. , and Mamatkanov D. M. , 2009: Changes in glacier mass balance in watershed of Sary Jaz-Kumarik rivers of Tianshan Mountains in 1957–2006 and their impact on water resources and trend to end of the 21th century (in Chinese). J. Glaciol. Geocryology, 31, 792800.

    • Search Google Scholar
    • Export Citation
  • Shi, Y. F., 2008: Glaciers and Related Environments in China (in Chinese). Science Press, 539 pp.

  • Shi, Y. F., Shen Y. P. , and Hu R. J. , 2002: Preliminary study on signal, impact and foreground of climatic shift from warm–dry to warm–humid in northwest China (in Chinese). J. Glaciol. Geocryology., 24, 219226.

    • Search Google Scholar
    • Export Citation
  • Singh, P., and Kumar N. , 1997: Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river. J. Hydrol., 193, 316350, doi:10.1016/S0022-1694(96)03142-3.

    • Search Google Scholar
    • Export Citation
  • Singh, M. P., Singh P. , and Haritashya U. K. , 2011: Encyclopedia of Snow, Ice and Glaciers. Springer, 1300 pp.

  • Sorg, A., Bolch T. , Stoffel M. , Solomina O. , and Beniston M. , 2012: Climate change impacts on glaciers and runoff in Tien Shan (central Asia). Nat. Climate Change, 2, 725731, doi:10.1038/nclimate1592.

    • Search Google Scholar
    • Export Citation
  • Tang, Q. C., Qu Y. G. , and Zhou Y. M. , 1992: Hydrology and Water Resources of Arid Area in China (in Chinese). Science Press, 195 pp.

  • Thornton, P. E., and Running S. W. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93, 211228, doi:10.1016/S0168-1923(98)00126-9.

    • Search Google Scholar
    • Export Citation
  • UNDP, 2009: Second national communication of the Kyrgyz Republic to the United Nations Framework Convention on Climate Change. UNDP, 199 pp.

  • Wang, S. J., Zhang M. J. , Li Z. Q. , Wang F. T. , Li H. L. , Li Y. J. , and Huang X. Y. , 2011: Glacier area variation and climate change in the Chinese Tianshan Mountains since 1960. J. Geogr. Sci., 21, 263273, doi:10.1007/s11442-011-0843-8.

    • Search Google Scholar
    • Export Citation
  • Webb, R. S., Rosenzweig C. E. , and Levine E. R. , 1993: Specifying land surface characteristics in general circulation models: Soil profile data set and derived water-holding capacities. Global Biogeochem. Cycles, 7, 97108, doi:10.1029/92GB01822.

    • Search Google Scholar
    • Export Citation
  • Wei, F. F., Tang J. P. , and Hui P. H. , 2013: Comparing high-resolution rain gauge–based precipitation data with satellite rainfall estimates of TRMM 3B42 over Asia. J. Nanjing Univ., 49, 320330.

    • Search Google Scholar
    • Export Citation
  • Xie, Z. H., and Yuan F. , 2006: A parameter estimation scheme of the land surface model VIC using the MOPEX databases. IAHS Publ., 307, 169179.

    • Search Google Scholar
    • Export Citation
  • Xu, J. L., Liu S. Y. , Zhang S. Q. , Guo W. Q. , and Wang J. , 2013: Recent changes in glacial area and volume on Tuanjiefeng Peak region of Qilian Mountains, China. PLoS One, 8, e70574, doi:10.1371/journal.pone.0070574.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., Kamiguchi K. , Arakawa O. , Hamada A. , Yasutomi N. , and Kitoh A. , 2012: APHRODITE constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Ye, B. S., Ding Y. J. , Jiao K. Q. , Shen Y. P. , and Zhang J. , 2012: The response of river discharge to climate warming in cold region over China (in Chinese). Quat. Sci., 32, 103110.

    • Search Google Scholar
    • Export Citation
  • Yu, P. J., Xu H. L. , Liu S. W. , An H. Y. , Zhang Q. Q. , and Gong J. J. , 2011: The nonlinear characteristics of annual runoff change in Aksu River (in Chinese). J. Nat. Resour., 26, 14121422.

    • Search Google Scholar
    • Export Citation
  • Zemp, M., and Coauthors, 2013: Reanalysing glacier mass balance measurement series. Cryosphere, 7, 12271245, doi:10.5194/tc-7-1227-2013.

    • Search Google Scholar
    • Export Citation
  • Zhang, S. Q., Ye B. S. , Liu S. Y. , Zhang X. W. , and Hagemann S. , 2012a: A modified monthly degree-day model for evaluating glacier runoff changes in China. Part I: Model development. Hydrol. Processes, 26, 16861696, doi:10.1002/hyp.8286.

    • Search Google Scholar
    • Export Citation
  • Zhang, S. Q., Gao X. , Ye B. S. , Zhang X. W. , and Hagemann S. , 2012b: A modified monthly degree-day model for evaluating glacier runoff changes in China. Part II: Application. Hydrol. Processes, 26, 16971706, doi:10.1002/hyp.8291.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Liu S. Y. , Shangguan D. H. , Han H. D. , Xie C. W. , and Wang J. , 2005: Study of the positive degree-day factors on the Koxkar Baqi Glacier on the south slope of Tianshan Mountains (in Chinese). J. Glaciol. Geocryology, 27, 337343.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Liu S. Y. , Xie C. W. , and Ding Y. J. , 2006: Application of a degree-day model for the determination of contributions to glacier meltwater and runoff near Keqicar Baqi Glacier, southwestern Tien Shan. Ann. Glaciol., 43, 280284, doi:10.3189/172756406781812320.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q. D., Ye B. S. , Ding Y. J. , Zhang S. Q. , Zhao C. C. , Wang J. , and Wang Z. R. , 2011: Simulation and analysis of river runoff in typical cold regions. Sci. Cold Arid Reg., 3, 498508.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q. D., and Coauthors, 2013: Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China. Environ. Earth Sci., 68, 87101, doi:10.1007/s12665-012-1718-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 507 308 17
PDF Downloads 393 215 8

Modeling Hydrologic Response to Climate Change and Shrinking Glaciers in the Highly Glacierized Kunma Like River Catchment, Central Tian Shan

View More View Less
  • 1 * State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
  • | 2 Division of Hydrology and Water–Land Resource in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
  • | 3 College of Urban and Environmental Science, Northwest University, Xian, China
Restricted access

Abstract

Arid and semiarid lowland areas of central Asia are largely dependent on fluvial water originating from the Tian Shan. Mountain glaciers contribute significantly to runoff, particularly in summer. With global warming, the total glacier area in the Kunma Like River catchment declined by 13.2% during 1990–2007. For future water resources, it is essential to quantify the responses of hydrologic processes to both climate change and shrinking glaciers in glacierized catchments, such as the headwaters of the Tarim River. Thus, a degree-day glacier melt algorithm was integrated into the macroscale hydrologic Variable Infiltration Capacity model (VIC). Good results were obtained for monthly runoff simulations in the Kunma Like River catchment, which suggest that the extended VIC has acceptable performance. Because of increased precipitation and air temperature, annual runoff in the catchment has increased by about 4.07 × 108 m3 decade−1 during 1984/85–2006/07. Under the assumption of the same climatic conditions, sensitivity analyses indicated that annual and summer river runoff volumes would decrease by 9.3% and 10.4%, respectively, for reductions in glacier area of 13.2%. The variation coefficient of annual runoff also increased because of shrinking glaciers. Runoff scenarios for warmer future climate and various deglaciation situations suggest that reductions in glacier area by >30% will likely produce less meltwater in summer and river runoff will decline. Consequently, the annual total discharge of the Kunma Like River is projected to decrease by 2.8%–19.4% in the 2050s scenario because of glacier shrinking.

Corresponding author address: Yong Jian Ding, State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, China 730000, China. E-mail: dyj@lzb.ac.cn

Abstract

Arid and semiarid lowland areas of central Asia are largely dependent on fluvial water originating from the Tian Shan. Mountain glaciers contribute significantly to runoff, particularly in summer. With global warming, the total glacier area in the Kunma Like River catchment declined by 13.2% during 1990–2007. For future water resources, it is essential to quantify the responses of hydrologic processes to both climate change and shrinking glaciers in glacierized catchments, such as the headwaters of the Tarim River. Thus, a degree-day glacier melt algorithm was integrated into the macroscale hydrologic Variable Infiltration Capacity model (VIC). Good results were obtained for monthly runoff simulations in the Kunma Like River catchment, which suggest that the extended VIC has acceptable performance. Because of increased precipitation and air temperature, annual runoff in the catchment has increased by about 4.07 × 108 m3 decade−1 during 1984/85–2006/07. Under the assumption of the same climatic conditions, sensitivity analyses indicated that annual and summer river runoff volumes would decrease by 9.3% and 10.4%, respectively, for reductions in glacier area of 13.2%. The variation coefficient of annual runoff also increased because of shrinking glaciers. Runoff scenarios for warmer future climate and various deglaciation situations suggest that reductions in glacier area by >30% will likely produce less meltwater in summer and river runoff will decline. Consequently, the annual total discharge of the Kunma Like River is projected to decrease by 2.8%–19.4% in the 2050s scenario because of glacier shrinking.

Corresponding author address: Yong Jian Ding, State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, China 730000, China. E-mail: dyj@lzb.ac.cn
Save