• Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., Knutti R. , Solomon S. , and Phillips A. S. , 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, doi:10.1038/nclimate1562.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1003, doi:10.1029/2000RG000092.

  • Hagemann, S., Chen C. , Haerter J. O. , Heinke J. , Gerten D. , and Piani C. , 2011: Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeor., 12, 556578, doi:10.1175/2011JHM1336.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: Impacts, Adaptation, and Vulnerability. Cambridge University Press, 976 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Jenkins, G. M., and Watts D. G. , 1969: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Johnson, F., and Sharma A. , 2012: A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. Water Resources Res., 48, W01504, doi:10.1029/2011WR010464.

    • Search Google Scholar
    • Export Citation
  • Li, H., Sheffield J. , and Wood E. F. , 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, doi:10.1029/2009JD012882.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Rosenberg E. A. , Lin C. , Mishra V. , Andreadis K. M. , Maurer E. P. , and Lettenmaier D. P. , 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 21372143, doi:10.1175/JCLI-D-12-00821.1.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and Pierce D. W. , 2014: Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol. Earth Syst. Sci., 18, 915925, doi:10.5194/hess-18-915-2014.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , and Lettenmaier D. P. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Brekke L. , Pruitt T. , and Duffy P. B. , 2007: Fine-resolution climate projections enhance regional climate change impact studies. Eos, Trans. Amer. Geophys. Union, 88, 504, doi:10.1029/2007EO470006.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Hidalgo H. G. , Das T. , Dettinger M. D. , and Cayan D. R. , 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138, doi:10.5194/hess-14-1125-2010.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and Coauthors, 2014: An enhanced archive facilitating climate impacts and adaptation analysis. Bull. Amer. Meteor. Soc., 95, 10111019, doi:10.1175/BAMS-D-13-00126.1.

    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., Vrac M. , and Loukos H. , 2009: Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett., 36, L11708, doi:10.1029/2009GL038401.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and Brier G. W. , 1968: Some Applications of Statistics to Meteorology. The Pennsylvania State University, 224 pp.

  • Pierce, D. W., and Coauthors, 2013: Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dyn., 40, 839856, doi:10.1007/s00382-012-1337-9.

    • Search Google Scholar
    • Export Citation
  • Polade, S. D., Pierce D. W. , Cayan D. R. , Gershunov A. , and Dettinger M. D. , 2014: The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep., 4, 4364, doi:10.1038/srep04364.

    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., Abatzoglou J. T. , Hegewisch K. C. , and Mote P. W. , 2013: Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J. Geophys. Res. Atmos., 118, 10 88410 906, doi:10.1002/jgrd.50843.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2013: North American climate in CMIP5 experiments. Part II: Evaluation of historical simulations of intraseasonal to decadal variability. J. Climate, 26, 92479290, doi:10.1175/JCLI-D-12-00593.1.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., Solomon S. , Dai A. , and Portmann R. W. , 2006: How often does it rain? J. Climate, 19, 916934, doi:10.1175/JCLI3672.1.

  • Taylor, K. E., Stouffer R. J. , and Meehl G. A. , 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and Seibert J. , 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456–457, 1229, doi:10.1016/j.jhydrol.2012.05.052.

    • Search Google Scholar
    • Export Citation
  • Thrasher, B., Maurer E. P. , McKellar C. , and Duffy P. B. , 2012: Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci., 16, 33093314, doi:10.5194/hess-16-3309-2012.

    • Search Google Scholar
    • Export Citation
  • Trewin, B. C., 2007: The role of climatological normals in a changing climate. WMO Tech. Directive WCDMP-61 and WMO-TD 1377, 40 pp. [Available online at http://www.wmo.int/datastat/documents/WCDMPNo61_1.pdf.]

  • von Storch, H., and Zwiers F. W. , 2001: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wang, L., and Chen W. , 2014: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol., 34, 20592078, doi:10.1002/joc.3822.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., and Jones P. D. , 1985: Influences of precipitation changes and direct CO2 effects on streamflow. Nature, 314, 149152, doi:10.1038/314149a0.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., Maurer E. P. , Kumar A. , and Lettenamier D. P. , 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3467 1152 38
PDF Downloads 3188 1086 54

Improved Bias Correction Techniques for Hydrological Simulations of Climate Change

View More View Less
  • 1 Division of Climate, Atmospheric Sciences, and Physical Oceanography, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Division of Climate, Atmospheric Sciences, and Physical Oceanography, Scripps Institution of Oceanography, University of California, San Diego, and U.S. Geological Survey, La Jolla, California
  • | 3 Civil Engineering Department, Santa Clara University, Santa Clara, California
  • | 4 Department of Geography, University of Idaho, Moscow, Idaho
Restricted access

Abstract

Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile matching (EDCDFm) bias correction preserves GCM changes in mean daily maximum temperature but not precipitation. An extension to EDCDFm termed PresRat is introduced, which generally preserves the GCM changes in mean precipitation. Another problem is that GCMs can have difficulty simulating variance as a function of frequency. To address this, a frequency-dependent bias correction method is introduced that is twice as effective as standard bias correction in reducing errors in the models’ simulation of variance as a function of frequency, and it does so without making any locations worse, unlike standard bias correction. Last, a preconditioning technique is introduced that improves the simulation of the annual cycle while still allowing the bias correction to take account of an entire season’s values at once.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0236.s1.

Corresponding author address: David W. Pierce, Division of Climate, Atmospheric Sciences, and Physical Oceanography, Scripps Institution of Oceanography, University of California, San Diego, Mail Stop 0224, La Jolla, CA 92093-0224. E-mail: dpierce@ucsd.edu

Abstract

Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile matching (EDCDFm) bias correction preserves GCM changes in mean daily maximum temperature but not precipitation. An extension to EDCDFm termed PresRat is introduced, which generally preserves the GCM changes in mean precipitation. Another problem is that GCMs can have difficulty simulating variance as a function of frequency. To address this, a frequency-dependent bias correction method is introduced that is twice as effective as standard bias correction in reducing errors in the models’ simulation of variance as a function of frequency, and it does so without making any locations worse, unlike standard bias correction. Last, a preconditioning technique is introduced that improves the simulation of the annual cycle while still allowing the bias correction to take account of an entire season’s values at once.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-14-0236.s1.

Corresponding author address: David W. Pierce, Division of Climate, Atmospheric Sciences, and Physical Oceanography, Scripps Institution of Oceanography, University of California, San Diego, Mail Stop 0224, La Jolla, CA 92093-0224. E-mail: dpierce@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 378.39 KB)
Save