• Berne, G. D., and Andrieu H. , 2005: Estimating the vertical structure of intense Mediterranean precipitation using two X-band weather radar systems. J. Atmos. Oceanic Technol., 22, 16561675, doi:10.1175/JTECH1802.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Chandrasekar V. , Hubbert H. , Gorgucci E. , Randeu W. L. , and Schoenhuber M. , 2003: Raindrop size distribution in different climate regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, doi:10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20, 752759, doi:10.1175/1520-0426(2003)20<752:LREITB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., Chandrasekar V. , Lim S. , Kennedy P. C. , Wang Y. , and Rutledge S. A. , 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Oceanic Technol., 28, 352364, doi:10.1175/2010JTECHA1488.1.

    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Coauthors, 2015: The Great Colorado Flood of September 2013. Bull. Amer. Meteor. Soc., 96, 14611487, doi:10.1175/BAMS-D-13-00241.1.

  • Gumbel, E. J., 1958: Statistics of Extremes. Columbia University Press, 375 pp.

  • Haylock, M. R., Hofstra N. , Klein Tank A. M. G. , Klok E. J. , Jones P. D. , and New M. , 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huuskonen, A., Saltikoff E. , and Holleman I. , 2014: The operational weather radar network in Europe. Bull. Amer. Meteor. Soc., 95, 897907, doi:10.1175/BAMS-D-12-00216.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm from the TRMM Precipitation Radar. J. Appl. Meteor. Climatol., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Kwiatkowski J. , Meneghini R. , Awaka J. , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P., Delrieu G. , Boudevillain B. , and Obled C. , 2010: Toward an error model for radar quantitative precipitation estimation in the Cévennes–Vivarais region, France. J. Hydrol.394, 28–41, doi:10.1016/j.jhydrol.2010.01.009.

  • Krajewski, W. K., Ciach G. J. , and Habib E. , 2003: An analysis of small-scale rainfall variability in different climatic regimes. Hydrol. Sci. J., 48, 151162, doi:10.1623/hysj.48.2.151.44694.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., Ushio T. , Shige S. , Kida S. , Kachi M. , and Okamoto K. , 2009: Verification of high resolution satellite-based rainfall estimates around Japan using gauge-calibrated ground radar dataset. J. Meteor. Soc. Japan, 87A, 203222, doi:10.2151/jmsj.87A.203.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor. Climatol., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Randel D. L. , Kulie M. , Wang N.-Y. , Ferraro R. , Munchak S. J. , and Petkovic V. , 2015: The evolution of the Goddard Profiling Algorithm to a fully parametric scheme. J. Appl. Meteor. Climatol., doi:10.1175/JTECH-D-15-0039.1, in press.

    • Search Google Scholar
    • Export Citation
  • Kunkee, D. B., Poe G. , Boucher D. , Swadley S. , Hong Y. , Wessl J. , and Uliana E. , 2008: Design and evaluation of the first Special Sensor Microwave Imager/Sounder. IEEE Trans. Geosci. Remote Sens., 46, 863883, doi:10.1109/TGRS.2008.917980.

    • Search Google Scholar
    • Export Citation
  • Kwon, E.-H., Sohn B.-J. , Chang D.-E. , Ahn M.-H. , and Yang S. , 2008: Use of numerical forecasts for improving TMI rain retrievals over the mountainous area in Korea. J. Appl. Meteor. Climatol., 47, 19952007, doi:10.1175/2007JAMC1857.1.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and Zawadzki I. , 2005: Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44, 241255, doi:10.1175/JAM2183.1.

    • Search Google Scholar
    • Export Citation
  • Lockhoff, M., Zolina O. , Simmer C. , and Schulz J. , 2014: Evaluation of satellite-retrieved extreme precipitation over Europe using gauge observations. J. Climate, 27, 607623, doi:10.1175/JCLI-D-13-00194.1.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2013: Experimental 4D-Var assimilation of SYNOP rain gauge data at ECMWF. Mon. Wea. Rev., 141, 15271544, doi:10.1175/MWR-D-12-00024.1.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2014: Comparison of ODYSSEY precipitation composites to SYNOP rain gauges and ECMWF model. ECMWF Tech. Memo. 717, 17 pp.

  • Marshall, J. S., and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miriovsky, B. J., and Coauthors, 2004: An experimental study of small-scale variability of radar reflectivity using disdrometer observations. J. Appl. Meteor., 43, 106118, doi:10.1175/1520-0450(2004)043<0106:AESOSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moszkowicz, S., Ciach G. J. , and Krajewski W. F. , 1994: Statistical detection of anomalous propagation in radar reflectivity patterns. J. Atmos. Oceanic Technol., 11, 10261034, doi:10.1175/1520-0426(1994)011<1026:SDOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80, 191216, doi:10.1175/1520-0477(1999)080<0191:MAROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Ulbrich C. W. , 2003: Cloud microphysical properties, process, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237–258.

  • Ryu, G.-H., Sohn B.-J. , Kummerow C. D. , Seo E.-K. , and Tripoli G. J. , 2012: Rain rate characteristics over the Korean peninsula and improvement of the Goddard Profiling (GPROF) database for TMI rainfall retrievals. J. Appl. Meteor. Climatol., 51, 786798, doi:10.1175/JAMC-D-11-094.1.

    • Search Google Scholar
    • Export Citation
  • Sandford, C., and Gaussiat N. , 2011: Evaluation of an error-based quality index for compositing using UK radar data. OPERA-3 Deliverable OPERA_2011_12, 13 pp. [Available online at www.eumetnet.eu/sites/default/files/OPERA_2011_12_Quality_index_evaluation.pdf.]

  • Seto, S., Iguchi T. , and Oki T. , 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, doi:10.1109/TGRS.2012.2231686.

    • Search Google Scholar
    • Export Citation
  • Sharma, S., Konwar M. , Sarma D. K. , Kalapureddy M. C. R. , and Jain A. R. , 2009: Characteristics of rain integral parameters during tropical convective, transition, and stratiform rain at Gadanki and its application in rain retrieval. J. Appl. Meteor. Climatol., 48, 12451266, doi:10.1175/2008JAMC1948.1.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Kida S. , Ashiwake H. , Kubota T. , and Aonashi K. , 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, doi:10.1175/JAMC-D-12-074.1.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Yamamoto M. K. , and Taniguchi A. , 2015: Improvement of TMI rain retrieval over the Indian subcontinent. Remote Sensing of the Terrestrial Water Cycle, Geophys. Monogr., Vol. 206, Amer. Geophys. Union, 27–42.

  • Shimoda, H., 2005: GCOM missions. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Vol. 6, Seoul, South Korea, IEEE, 42014204, doi:10.1109/IGARSS.2005.1525844.

  • Sohn, B.-J., Ryu G.-H. , Song H.-J. , and Oh M.-L. , 2013: Characteristic features of warm-type rain producing heavy rainfall over the Korean peninsula inferred from TRMM measurements. Mon. Wea. Rev., 141, 38733888, doi:10.1175/MWR-D-13-00075.1.

    • Search Google Scholar
    • Export Citation
  • Taniguchi, A., and Coauthors, 2013: Improvement of high-resolution satellite rainfall product for Typhoon Morakot (2009) over Taiwan. J. Hydrometeor., 14, 18591871, doi:10.1175/JHM-D-13-047.1.

    • Search Google Scholar
    • Export Citation
  • Westra, S., Alexander L. V. , and Zwiers F. W. , 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, doi:10.1175/JCLI-D-12-00502.1.

    • Search Google Scholar
    • Export Citation
  • Wolf, P. O., 1966: Comparison of methods of flood estimation. Proceedings of the Symposium on River Flood Hydrology, Institution of Civil Engineers on River Flood Hydrology, 1–23.

  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 163 71 6
PDF Downloads 91 34 4

Performance of the GPM Passive Microwave Retrieval in the Balkan Flood Event of 2014

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Restricted access

Abstract

An updated version of the Goddard Profiling Algorithm (GPROF 2014) with a new overland scheme was released with the launch of the Global Precipitation Mission (GPM) core satellite in February 2014. The algorithm is designed to provide consistent precipitation estimates over both ocean and land across diverse satellite platforms. This study tests the performance of the new retrieval, focusing specifically on an extreme rainfall event. Two contrasting 72-h precipitation events over the same area are used to compare the retrieved products against ground measurements. The first event is characterized by persistent and intense precipitation of an unusually strong and widespread system, which caused historical flooding of the central Balkan region of southeastern Europe in May 2014. The second event serves as a baseline case for a more typical midlatitude regime. Rainfall rates and 3-day accumulations given by five conically scanning radiometers (GMI; AMSR2; and SSMIS F16, F17, and F18) in the GPM constellation are compared against ground radar data from the Operational Program for Exchange of Weather Radar Information (OPERA) network and in situ measurements. Satellite products show good agreement with ground radars; the retrieval closely reproduces spatial and temporal characteristics of both events. Strong biases related to precipitation regimes are found when satellite and radar measurements are compared to ground gauges. While the GPM constellation performs well during the nonextreme event, showing ~10% negative bias, it underestimates gauge accumulations of the Balkan flood event by 60%. Analyses show that the biases are caused by the differences between the expected and observed ice-scattering signals, suggesting that better understanding of the environment and its impact on rain profiles is the key for successful retrievals in extreme events.

Corresponding author address: Veljko Petković, 3915 W. Laporte Ave., Fort Collins, CO 80521. E-mail: veljko@atmos.colostate.edu

Abstract

An updated version of the Goddard Profiling Algorithm (GPROF 2014) with a new overland scheme was released with the launch of the Global Precipitation Mission (GPM) core satellite in February 2014. The algorithm is designed to provide consistent precipitation estimates over both ocean and land across diverse satellite platforms. This study tests the performance of the new retrieval, focusing specifically on an extreme rainfall event. Two contrasting 72-h precipitation events over the same area are used to compare the retrieved products against ground measurements. The first event is characterized by persistent and intense precipitation of an unusually strong and widespread system, which caused historical flooding of the central Balkan region of southeastern Europe in May 2014. The second event serves as a baseline case for a more typical midlatitude regime. Rainfall rates and 3-day accumulations given by five conically scanning radiometers (GMI; AMSR2; and SSMIS F16, F17, and F18) in the GPM constellation are compared against ground radar data from the Operational Program for Exchange of Weather Radar Information (OPERA) network and in situ measurements. Satellite products show good agreement with ground radars; the retrieval closely reproduces spatial and temporal characteristics of both events. Strong biases related to precipitation regimes are found when satellite and radar measurements are compared to ground gauges. While the GPM constellation performs well during the nonextreme event, showing ~10% negative bias, it underestimates gauge accumulations of the Balkan flood event by 60%. Analyses show that the biases are caused by the differences between the expected and observed ice-scattering signals, suggesting that better understanding of the environment and its impact on rain profiles is the key for successful retrievals in extreme events.

Corresponding author address: Veljko Petković, 3915 W. Laporte Ave., Fort Collins, CO 80521. E-mail: veljko@atmos.colostate.edu
Save