• Bhowmik, A. K., and Costa A. C. , 2014: Representativeness impacts on accuracy and precision of climate spatial interpolation in data-scarce regions. Meteor. Appl., 22, 368–377, doi:10.1002/met.1463.

  • Booij, M. J., 2002: Extreme daily precipitation in western Europe with climate change at appropriate spatial scales. Int. J. Climatol., 22, 6985, doi:10.1002/joc.715.

    • Search Google Scholar
    • Export Citation
  • Booij, M. J., and de Wit M. M. J. , 2010: Extreme value statistics for annual minimum and trough underthreshold precipitation at different spatio‐temporal scales. Hydrol. Sci. J., 55, 12891301, doi:10.1080/02626667.2010.528764.

    • Search Google Scholar
    • Export Citation
  • Bootsma, A., Gameda S. , and McKenney D. W. , 2005: Impacts of potential climate change on selected agroclimatic indices in Atlantic Canada. Can. J. Soil Sci., 85, 329343, doi:10.4141/S04-019.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and Knutson T. , 2008: On the verification and comparison of extreme rainfall indices from climate models. J. Climate, 21, 16051621, doi:10.1175/2007JCLI1494.1.

    • Search Google Scholar
    • Export Citation
  • DeAngelis, A. M., Broccoli A. J. , and Decker S. G. , 2013: A comparison of CMIP3 simulations of precipitation over North America with observations: Daily statistics and circulation features accompanying extreme events. J. Climate, 26, 32093230, doi:10.1175/JCLI-D-12-00374.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Diaconescu, E. P., Gachon P. , Scinocca J. , and Laprise R. , 2015: Evaluation of daily precipitation statistics and monsoon onset/retreat over western Sahel in multiple data sets. Climate Dyn., 45, 13251354, doi:10.1007/s00382-014-2383-2.

  • Eum, H.-I., Gachon P. , Laprise R. , and Ouarda T. , 2012: Evaluation of regional climate model simulations versus gridded observed and regional reanalysis products using a combined weighting scheme. Climate Dyn., 38, 1433–1457, doi:10.1007/s00382-011-1149-3.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., Ekström M. , Kilsby C. G. , and Jones P. D. , 2005: New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Assessment of control climate. J. Hydrol., 300, 212233, doi:10.1016/j.jhydrol.2004.06.017.

    • Search Google Scholar
    • Export Citation
  • Gbobaniyi, E., and Coauthors, 2014: Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int. J. Climatol., 34, 22412257, doi:10.1002/joc.3834.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Jones C. , and Asrar G. R. , 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58 (3), 175183.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., Hofstra N. , Klein Tank A. M. G. , Klok E. J. , Jones P. D. , and New M. , 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Hofstra, N., New M. , and McSweeney C. , 2010: The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Climate Dyn., 35, 841858, doi:10.1007/s00382-009-0698-1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Kalognomou, E.-A., and Coauthors, 2013: A diagnostic evaluation of precipitation in CORDEX models over Southern Africa. J. Climate, 26, 94779506, doi:10.1175/JCLI-D-12-00703.1.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S.-K. , Hnilo J. , Fiorino M. , and Potter J. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and Coauthors, 2015: Surface temperature probability distributions in the NARCCAP hindcast experiment: Evaluation methodology, metrics and results. J. Climate, 28, 978–997, doi:10.1175/JCLI-D-13-00457.1.

    • Search Google Scholar
    • Export Citation
  • Mehran, A., AghaKouchak A. , and Phillips T. J. , 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 16951707, doi:10.1002/2013JD021152.

    • Search Google Scholar
    • Export Citation
  • Nikulin, G., and Coauthors, 2012: Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Climate, 25, 60576078, doi:10.1175/JCLI-D-11-00375.1.

    • Search Google Scholar
    • Export Citation
  • Novella, N. S., and Thiaw W. M. , 2013: African Rainfall Climatology version 2 for famine early warning systems. J. Appl. Meteor. Climatol., 52, 588606, doi:10.1175/JAMC-D-11-0238.1.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., and Hulme M. , 1997: Development of a relationship between station and grid‐box rainday frequencies for climate model evaluation. J. Climate, 10, 18851908, doi:10.1175/1520-0442(1997)010<1885:DOARBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., Kharin V. V. , Zhang X. , Zwiers F. W. , and Bronaugh D. , 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, doi:10.1002/jgrd.50203.

    • Search Google Scholar
    • Export Citation
  • Sunyer, M. A., Madsen H. , Rosbjerg D. , and Arnbjerg-Nielsen K. , 2013: Regional interdependency of precipitation indices across Denmark in two ensembles of high-resolution RCMs. J. Climate, 26, 79127928, doi:10.1175/JCLI-D-12-00707.1.

    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., Giorgi F. , Coppola E. , and Mariotti L. , 2013: Uncertainties in daily rainfall over Africa: Assessment of gridded observation products and evaluation of a regional climate model simulation. Int. J. Climatol., 33, 1805–1817, doi:10.1002/joc.3551.

    • Search Google Scholar
    • Export Citation
  • Tencer, B., Weaver A. , and Zwiers F. , 2014: Joint occurrence of daily temperature and precipitation extreme events over Canada. J. Appl. Meteor. Climatol., 53, 21482162, doi:10.1175/JAMC-D-13-0361.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Alexander L. , Hegerl G. C. , Jones P. , Klein Tank A. M. G. , Peterson T. C. , Trewin B. , and Zwiers F. W. , 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, doi:10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 458 237 26
PDF Downloads 373 201 5

On the Remapping Procedure of Daily Precipitation Statistics and Indices Used in Regional Climate Model Evaluation

View More View Less
  • 1 Canadian Centre for Climate Modelling and Analysis, Environment Canada, Montréal, Québec, Canada
  • | 2 Centre pour l’étude et la simulation du climat à l’échelle régionale, Department of Geography, Université du Québec à Montréal, and Canadian Centre for Climate Modelling and Analysis, Environment Canada, Montréal, Québec, Canada
  • | 3 Centre pour l’étude et la simulation du climat à l’échelle régionale, Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
Restricted access

Abstract

Gridded estimates of precipitation using both satellite and observational station data are regularly used as reference products in the evaluation of basic climate fields and derived indices as simulated by regional climate models (RCMs) over the current period. One of the issues encountered in RCM evaluation is the fact that RCMs and reference fields are usually on different grids and often at different horizontal resolutions. A proper RCM evaluation requires remapping on a common grid. For the climate indices or other derived fields, the remapping can be done in two ways: either as a first-step operation on the original field with the derived index computed on the final/common grid in a second step, or to compute first the climate index on the original grid before remapping or regridding it as a last-step operation on the final/common grid. The purpose of this paper is to illustrate how the two approaches affect the final field, thus contributing to one of the Coordinated Regional Climate Downscaling Experiment (CORDEX) in Africa (CORDEX-Africa) goals of providing a benchmark framework for RCM evaluation over the West Africa monsoon area, using several daily precipitation indices. The results indicate the advantage of using the last-step remapping procedure, regardless of the mathematical method chosen for the remapping, in order to minimize errors in the indices under evaluation.

Current affiliation: Eau Terre Environnement Centre, Institut national de la recherche scientifique (INRS), Québec City, Québec, Canada.

Denotes Open Access content.

Corresponding author address: Emilia Paula Diaconescu, ESCER Centre, Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, P.O. Box 8888, Stn. Downtown, Montréal QC H3C 3P8, Canada. E-mail: emilia.diaconescu@gmail.com

Abstract

Gridded estimates of precipitation using both satellite and observational station data are regularly used as reference products in the evaluation of basic climate fields and derived indices as simulated by regional climate models (RCMs) over the current period. One of the issues encountered in RCM evaluation is the fact that RCMs and reference fields are usually on different grids and often at different horizontal resolutions. A proper RCM evaluation requires remapping on a common grid. For the climate indices or other derived fields, the remapping can be done in two ways: either as a first-step operation on the original field with the derived index computed on the final/common grid in a second step, or to compute first the climate index on the original grid before remapping or regridding it as a last-step operation on the final/common grid. The purpose of this paper is to illustrate how the two approaches affect the final field, thus contributing to one of the Coordinated Regional Climate Downscaling Experiment (CORDEX) in Africa (CORDEX-Africa) goals of providing a benchmark framework for RCM evaluation over the West Africa monsoon area, using several daily precipitation indices. The results indicate the advantage of using the last-step remapping procedure, regardless of the mathematical method chosen for the remapping, in order to minimize errors in the indices under evaluation.

Current affiliation: Eau Terre Environnement Centre, Institut national de la recherche scientifique (INRS), Québec City, Québec, Canada.

Denotes Open Access content.

Corresponding author address: Emilia Paula Diaconescu, ESCER Centre, Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, P.O. Box 8888, Stn. Downtown, Montréal QC H3C 3P8, Canada. E-mail: emilia.diaconescu@gmail.com
Save