• Aires, F., Prigent C. , Bernardo F. , Jiménez C. , Saunders R. , and Brunel P. , 2011: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690699, doi:10.1002/qj.803.

    • Search Google Scholar
    • Export Citation
  • Bartalis, Z., Scipal K. , and Wagner W. , 2006: Azimuthal anisotropy of scatterometer measurements over land. IEEE Trans. Geosci. Remote Sens., 44, 20832092, doi:10.1109/TGRS.2006.872084.

    • Search Google Scholar
    • Export Citation
  • Bhowmick, S. A., Kumar R. , and Kumar A. S. K. , 2014: Cross calibration of the OceanSAT-2 scatterometer with QuikSCAT scatterometer using natural terrestrial targets. IEEE Trans. Geosci. Remote Sens., 52, 33933398, doi:10.1109/TGRS.2013.2272738.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2014: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos., 119, 51285141, doi:10.1002/2014JD021489.

    • Search Google Scholar
    • Export Citation
  • Colliander, A., McDonald K. , Zimmermann R. , Schroeder R. , Kimball J. S. , and Njoku E. G. , 2012: Application of QuikSCAT backscatter to SMAP validation planning: Freeze/thaw state over ALECTRA sites in Alaska from 2000 to 2007. IEEE Trans. Geosci. Remote Sens., 50, 461468, doi:10.1109/TGRS.2011.2174368.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., Tanelli S. , and Meneghini R. , 2012: Using surface classification to improve surface reference technique performance over land. Indian J. Radio Space Phys., 41, 403410.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51, 378398, doi:10.1109/TGRS.2012.2199121.

    • Search Google Scholar
    • Export Citation
  • Glenn, E. P., Huete A. R. , Nagler P. L. , and Nelson S. G. , 2008: Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors, 8, 21362160, doi:10.3390/s8042136.

    • Search Google Scholar
    • Export Citation
  • Gohil, B. S., Gairola R. M. , Mathur A. K. , Varma A. K. , Mahesh C. , Gangwar R. K. , and Pal P. K. , 2013: Algorithms for retrieving geophysical parameters from the MADRAS and SAPHIR sensors of the Megha-Tropiques satellite: Indian scenario. Quart. J. Roy. Meteor. Soc., 139, 954963, doi:10.1002/qj.2041.

    • Search Google Scholar
    • Export Citation
  • Gopalan, K., Wang N. Y. , Ferraro R. , and Liu C. , 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, doi:10.1175/2010JTECHA1454.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huang, S., Tsang L. , Njoku E. G. , and Chan K. S. , 2010: Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at L-band for SMAP applications based on numerical solutions of Maxwell equations in three-dimensional simulations. IEEE Trans. Geosci. Remote Sens., 48, 25572568, doi:10.1109/TGRS.2010.2040748.

    • Search Google Scholar
    • Export Citation
  • Hunt, E. R., Li L. , Yilmaz M. T. , and Jackson T. J. , 2011: Comparison of vegetation water contents derived from shortwave-infrared and passive-microwave sensors over central Iowa. Remote Sens. Environ., 115, 23762383, doi:10.1016/j.rse.2011.04.037.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., McDonald K. C. , Running S. W. , and Frolking S. E. , 2004: Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. Remote Sens. Environ., 90, 243258, doi:10.1016/j.rse.2004.01.002.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and Stephens G. L. , 2002: An uncertainty model for Bayesian Monte Carlo retrieval algorithms: Application to the TRMM observing system. Quart. J. Roy. Meteor. Soc., 128, 17131737, doi:10.1002/qj.200212858316.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2010: WindSat global soil moisture retrieval and validation. IEEE Trans. Geosci. Remote Sens., 48, 22242241, doi:10.1109/TGRS.2009.2037749.

    • Search Google Scholar
    • Export Citation
  • Lu, L., Guo H. , Wang C. , and Li Q. , 2013: Assessment of the SeaWinds scatterometer for vegetation phenology monitoring across China. Int. J. Remote Sens., 34, 55515568, doi:10.1080/01431161.2013.794986.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and Jones J. A. , 2011: Standard deviation of spatially averaged surface cross section data from the TRMM Precipitation Radar. IEEE Trans. Geosci. Remote Sens., 8, 293297, doi:10.1109/LGRS.2010.2064755.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Iguchi T. , Kozu T. , Liao L. , Okamoto K. , Jones J. A. , and Kwiatkowski J. , 2000: Use of the surface reference technique for path attenuation estimates from the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20532070, doi:10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Jones J. A. , Iguchi T. , Okamoto K. , and Kwiatkowski J. , 2004: A hybrid surface reference technique and its application to the TRMM Precipitation Radar. J. Atmos. Oceanic Technol., 21, 16451658, doi:10.1175/JTECH1664.1.

    • Search Google Scholar
    • Export Citation
  • Mladenova, I., Lakshmi V. , Walker J. P. , Long D. G. , and De Jeu R. , 2009: An assessment of QuikSCAT Ku-band scatterometer data for soil moisture sensitivity. IEEE Trans. Geosci. Remote Sens., 6, 640643, doi:10.1109/LGRS.2009.2021492.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and Skofronick-Jackson G. , 2013: Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders. Atmos. Res., 131, 8194, doi:10.1016/j.atmosres.2012.10.011.

    • Search Google Scholar
    • Export Citation
  • Nghiem, S., Wardlow B. D. , Allured D. , Svoboda M. D. , LeComte D. , Rosencrans M. , Chan S. , and Neumann G. , 2012: Microwave remote sensing of soil moisture: Science and applications. Microwave Remote Sensing of Drought: Innovative Monitoring Approaches, B. D. Wardlow, M. C. Anderson, and J. P. Verdin, Eds., CRC Press, 197–226.

  • Norouzi, H., Rossow W. , Temimi M. , Prigent C. , Azarderakhsh M. , Boukabara S. , and Khanbilvardi R. , 2012: Using microwave brightness temperature diurnal cycle to improve emissivity retrievals over land. Remote Sens. Environ., 123, 470482, doi:10.1016/j.rse.2012.04.015.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 2013: Dimensionality reduction in Bayesian estimation algorithms. Atmos. Meas. Tech. Discuss., 6, 23272352, doi:10.5194/amtd-6-2327-2013.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Aires F. , and Rossow W. B. , 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15731584, doi:10.1175/BAMS-87-11-1573.

    • Search Google Scholar
    • Export Citation
  • Puri, S., Stephen H. , and Ahmad S. , 2011: Relating TRMM Precipitation Radar backscatter to water stage in wetlands. J. Hydrol., 401, 240249, doi:10.1016/j.jhydrol.2011.02.026.

    • Search Google Scholar
    • Export Citation
  • Ringerud, S., Kummerow C. , Peters-Lidard C. , Tian Y. , and Harrison K. , 2014: A comparison of microwave window channel retrieved and forward-modeled emissivities over the U.S. southern Great Plains. IEEE Trans. Geosci. Remote Sens., 52, 23952412, doi:10.1109/TGRS.2013.2260759.

    • Search Google Scholar
    • Export Citation
  • Seto, S., and Iguchi T. , 2007: Rainfall-induced changes in actual surface backscattering cross sections and effects on rain-rate estimates by spaceborne precipitation radar. J. Atmos. Oceanic Technol., 24, 16931709, doi:10.1175/JTECH2088.1.

    • Search Google Scholar
    • Export Citation
  • Stephen, H., Ahmad S. , Piechota T. C. , and Tang C. , 2010: Relating surface backscatter response from TRMM Precipitation Radar to soil moisture: Results over a semi-arid region. Hydrol. Earth Syst. Sci., 14, 193204, doi:10.5194/hess-14-193-2010.

    • Search Google Scholar
    • Export Citation
  • Teng, W. L., Wang J. R. , and Doraiswamy P. C. , 1993: Relationship between satellite microwave radiometric data, antecedent precipitation index, and regional soil moisture. Int. J. Remote Sens., 14, 24832500, doi:10.1080/01431169308904287.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Haddad Z. S. , and You Y. , 2014a: Principal components of multifrequency microwave land surface emissivities. Part I: Estimation under clear and precipitating conditions. J. Hydrometeor., 15, 319, doi:10.1175/JHM-D-13-08.1.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Li L. , and Haddad Z. S. , 2014b: A physically based soil moisture and microwave emissivity data set for Global Precipitation Measurement (GPM) applications. IEEE Trans. Geosci. Remote Sens., 52, 76377650, doi:10.1109/TGRS.2014.2315809.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., Lemoine G. , Borgeaud M. , and Rott H. , 1999: A study of vegetation cover effects on ERS scatterometer data. IEEE Trans. Geosci. Remote Sens., 37, 938948, doi:10.1109/36.752212.

    • Search Google Scholar
    • Export Citation
  • Wang, L., Derksen C. , and Brown R. , 2008: Detection of pan-Arctic terrestrial snowmelt from QuikSCAT, 2000–2005. Remote Sens. Environ., 112, 37943805, doi:10.1016/j.rse.2008.05.017.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Yilmaz, M. T., Hunt E. R. , and Jackson T. J. , 2008: Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sens. Environ., 112, 25142522, doi:10.1016/j.rse.2007.11.014.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 61 3
PDF Downloads 44 20 0

Exploiting Over-Land OceanSat-2 Scatterometer Observations to Capture Short-Period Time-Integrated Precipitation

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Indian Space Research Organisation, Atmospheric and Oceanic Sciences Group, Ahmedabad, India
  • | 3 University of Oklahoma, Norman, Oklahoma
  • | 4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Restricted access

Abstract

Estimation of overland precipitation using observations from the radar and passive microwave radiometer sensors onboard the current Global Precipitation Measurement (GPM) and predecessor Tropical Rainfall Measuring Mission (TRMM) satellites is constrained by the underlying surface variability. The factors controlling the multichannel microwave surface emissivity and radar surface backscatter are related to surface properties such as soil type and vegetation properties that vary with location and time. Variability due to slowly varying seasonal changes can be considered when simulating radar reflectivities and radiometer equivalent blackbody brightness temperatures for use with precipitation retrieval algorithms. However, over certain surfaces, a more transient, dynamic surface change is manifested upon the onset of intermittent rain events. In these situations, a timely update of the surface state prior to each satellite overpass, together with knowledge of the associated variability in the emissivity and radar surface backscatter, may be useful to improve the performance of the overland precipitation retrieval algorithms. In this study, the potential for wide-swath surface backscatter observations from the Ku-band, dual-beam OceanSat-2 scatterometer (OSCAT) is examined as a surface reference for tracking previous-time precipitation. Over certain surfaces, it is shown that a time-change detection approach is useful to isolate the change in radar backscatter owing to previous 3-h rainfall accumulations from the more slowly varying background state. A practical use of this method would be the production of an ancillary previous-time precipitation map, which could be consulted by retrieval algorithms to select (or adjust the weighting of) candidate solutions that represent the most current surface conditions.

Corresponding author address: Dr. Francis J. Turk, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 300-243, Pasadena, CA 91109. E-mail: jturk@jpl.nasa.gov

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Abstract

Estimation of overland precipitation using observations from the radar and passive microwave radiometer sensors onboard the current Global Precipitation Measurement (GPM) and predecessor Tropical Rainfall Measuring Mission (TRMM) satellites is constrained by the underlying surface variability. The factors controlling the multichannel microwave surface emissivity and radar surface backscatter are related to surface properties such as soil type and vegetation properties that vary with location and time. Variability due to slowly varying seasonal changes can be considered when simulating radar reflectivities and radiometer equivalent blackbody brightness temperatures for use with precipitation retrieval algorithms. However, over certain surfaces, a more transient, dynamic surface change is manifested upon the onset of intermittent rain events. In these situations, a timely update of the surface state prior to each satellite overpass, together with knowledge of the associated variability in the emissivity and radar surface backscatter, may be useful to improve the performance of the overland precipitation retrieval algorithms. In this study, the potential for wide-swath surface backscatter observations from the Ku-band, dual-beam OceanSat-2 scatterometer (OSCAT) is examined as a surface reference for tracking previous-time precipitation. Over certain surfaces, it is shown that a time-change detection approach is useful to isolate the change in radar backscatter owing to previous 3-h rainfall accumulations from the more slowly varying background state. A practical use of this method would be the production of an ancillary previous-time precipitation map, which could be consulted by retrieval algorithms to select (or adjust the weighting of) candidate solutions that represent the most current surface conditions.

Corresponding author address: Dr. Francis J. Turk, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 300-243, Pasadena, CA 91109. E-mail: jturk@jpl.nasa.gov

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Save