• Andreadis, K. M., Clark E. A. , Wood A. W. , Hamlet A. F. , and Lettenmaier D. P. , 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, doi:10.1175/JHM450.1.

    • Search Google Scholar
    • Export Citation
  • COPA-COGECA, 2003: Assessment of the impact of the heat wave and drought of the summer 2003 on agriculture and forestry. United Nations Environment Programme, Brussels, Belgium, 15 pp.

  • Day, G., 1985: Extended streamflow forecasting using NWSRFS. J. Water Resour. Plann. Manage., 111, 157170, doi:10.1061/(ASCE)0733-9496(1985)111:2(157).

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Guo Z. , and Gao X. , 2004: Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeor., 5, 10111033, doi:10.1175/JHM-388.1.

    • Search Google Scholar
    • Export Citation
  • Döll, P., Kaspar F. , and Lehner B. , 2003: A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol., 270, 105134, doi:10.1016/S0022-1694(02)00283-4.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Magnusson L. , Wetterhall F. , Cloke H. L. , Balsamo G. , Boussetta S. , and Pappenberger F. , 2013: The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products. Int. J. Climatol., 33, 17201729, doi:10.1002/joc.3545.

    • Search Google Scholar
    • Export Citation
  • Hargreaves, G. H., and Samani Z. A. , 1985: Reference crop evapotranspiration from temperature. Appl. Eng. Agric., 1, 9699, doi:10.13031/2013.26773.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., Hofstra N. , Klein Tank A. M. G. , Klok E. J. , Jones P. D. , and New M. , 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 10491063, doi:10.1175/JHM-387.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Guo Z. , Yang R. , Dirmeyer P. A. , Mitchell K. , and Puma M. J. , 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335, doi:10.1175/2009JCLI2832.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, R., Livneh B. , and Samaniego L. , 2013a: Toward computationally efficient large-scale hydrologic predictions with a multiscale regionalization scheme. Water Resour. Res., 49, 57005714, doi:10.1002/wrcr.20431.

    • Search Google Scholar
    • Export Citation
  • Kumar, R., Samaniego L. , and Attinger S. , 2013b: Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resour. Res., 49, 360379, doi:10.1029/2012WR012195.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • Luo, L., and Wood E. F. , 2007: Monitoring and predicting the 2007 U.S. drought. Geophys. Res. Lett., 34, L22702, doi:10.1029/2007GL031673.

    • Search Google Scholar
    • Export Citation
  • Luo, L., Wood E. F. , and Pan M. , 2007: Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions. J. Geophys. Res., 112, D10102, doi:10.1029/2006JD007655.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2011: Drought onset and recovery over the United States. J. Geophys. Res., 116, D20106, doi:10.1029/2011JD016168.

  • Mo, K. C., and Lettenmaier D. P. , 2014: Hydrologic prediction over the conterminous United States using the National Multi-Model Ensemble. J. Hydrometeor., 15, 14571472, doi:10.1175/JHM-D-13-0197.1.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and Lyon B. , 2015: Global meteorological drought prediction using the North American Multi-Model Ensemble. J. Hydrometeor., 16, 14091424, doi:10.1175/JHM-D-14-0192.1.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., Shukla S. , Lettenmaier D. P. , and Chen L.-C. , 2012: Do Climate Forecast System (CFSv2) forecasts improve seasonal soil moisture prediction? Geophys. Res. Lett., 39, L23703, doi:10.1029/2012GL053598.

    • Search Google Scholar
    • Export Citation
  • NMME Project, 2014: NMME phase-II data plan. Tech. Rep., NOAA, 3 pp. [Available online at http://www.cpc.ncep.noaa.gov/products/ctb/nmme/NMME-PhaseII-DataPlan-27May.pdf.]

  • Rakovec, O., and Coauthors, 2015: Multiscale and multivariate evaluation of water fluxes and states over European river basins. J. Hydrometeor., doi:10.1175/JHM-D-15-0054.1, in press

    • Search Google Scholar
    • Export Citation
  • ReliefWeb, 2015: Horn of Africa crisis: 2011–2012. United Nations Office for the Coordination of Humanitarian Affairs, accessed 26 March 2015. [Available online at http://reliefweb.int/disaster/dr-2011-000029-ken.]

  • Samaniego, L., Kumar R. , and Attinger S. , 2010: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res., 46, W05523, doi:10.1029/2008WR007327.

    • Search Google Scholar
    • Export Citation
  • Samaniego, L., Kumar R. , and Zink M. , 2013: Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeor., 14, 4768, doi:10.1175/JHM-D-12-075.1.

    • Search Google Scholar
    • Export Citation
  • Samaniego, L., Rakovec O. , Kumar R. , Schaefer D. , Cuntz M. , Mai J. , Thober S. , and Attinger S. , 2014: Multiscale prediction and verification of water fluxes and states over large river basins. 2014 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H53M-04.

  • Madadgar, S., and Moradkhani H. , 2013: A Bayesian framework for probabilistic seasonal drought forecasting. J. Hydrometeor., 14, 16851705, doi:10.1175/JHM-D-13-010.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Wood E. F. , 2011: Drought: Past Problems and Future Scenarios. Routledge, 224 pp.

  • Sheffield, J., Livneh B. , and Wood E. F. , 2012: Representation of terrestrial hydrology and large-scale drought of the continental united states from the North American Regional Reanalysis. J. Hydrometeor., 13, 856876, doi:10.1175/JHM-D-11-065.1.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., and Lettenmaier D. P. , 2011: Seasonal hydrologic prediction in the United States: Understanding the role of initial hydrologic conditions and seasonal climate forecast skill. Hydrol. Earth Syst. Sci., 15, 35293538, doi:10.5194/hess-15-3529-2011.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., Sheffield J. , Wood E. F. , and Lettenmaier D. P. , 2013: On the sources of global land surface hydrologic predictability. Hydrol. Earth Syst. Sci., 17, 27812796, doi:10.5194/hess-17-2781-2013.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., McNally A. , Husak G. , and Funk C. , 2014: A seasonal agricultural drought forecast system for food-insecure regions of East Africa. Hydrol. Earth Syst. Sci., 18, 39073921, doi:10.5194/hess-18-3907-2014.

    • Search Google Scholar
    • Export Citation
  • Smith, A., and Katz R. , 2013: US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387410, doi:10.1007/s11069-013-0566-5.

    • Search Google Scholar
    • Export Citation
  • Smith, A., and Matthews J. , 2015: Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates. Nat. Hazards, 77, 18291851, doi:10.1007/s11069-015-1678-x.

    • Search Google Scholar
    • Export Citation
  • Thober, S., and Samaniego L. , 2014: Robust ensemble selection by multivariate evaluation of extreme precipitation and temperature characteristics. J. Geophys. Res. Atmos., 119, 594613, doi:10.1002/2013JD020505.

    • Search Google Scholar
    • Export Citation
  • Thober, S., Mai J. , Zink M. , and Samaniego L. , 2014: Stochastic temporal disaggregation of monthly precipitation for regional gridded data sets. Water Resour. Res., 50, 87148735, doi:10.1002/2014WR015930.

    • Search Google Scholar
    • Export Citation
  • Twedt, T., Schaake J. J. , and Peck E. , 1977: National weather service extended streamflow prediction. Proc. 45th Annual Western Snow Conf., Albuquerque, NM, Western Snow Conference, 52–57.

  • van Loon, A. F., Tijdeman E. , Wanders N. , VanLanen H. A. , Teuling A. J. , and Uijlenhoet R. , 2014: How climate seasonality modifies drought duration and deficit. J. Geophys. Res. Atmos., 119, 46404656, doi:10.1002/2013JD020383.

    • Search Google Scholar
    • Export Citation
  • Vidal, J.-P., Martin E. , Franchistéguy L. , Habets F. , Soubeyroux J.-M. , Blanchard M. , and Baillon M. , 2010: Multilevel and multiscale drought reanalysis over France with the SAFRAN–ISBA–MODCOU hydrometeorological suite. Hydrol. Earth Syst. Sci., 14, 459478, doi:10.5194/hess-14-459-2010.

    • Search Google Scholar
    • Export Citation
  • Wang, A., Lettenmaier D. P. , and Sheffield J. , 2011: Soil moisture drought in China, 1950–2006. J. Climate, 24, 32573271, doi:10.1175/2011JCLI3733.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wood, A. W., and Lettenmaier D. P. , 2008: An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett., 35, L14401, doi:10.1029/2008GL034648.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and Wood E. F. , 2012a: Downscaling precipitation or bias-correcting streamflow? Some implications for coupled general circulation model (CGCM)-based ensemble seasonal hydrologic forecast. Water Resour. Res., 48, W12519, doi:10.1029/2012WR012256.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and Wood E. F. , 2012b: On the clustering of climate models in ensemble seasonal forecasting. Geophys. Res. Lett., 39, L18701, doi:10.1029/2012GL052735.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and Wood E. F. , 2013: Multimodel seasonal forecasting of global drought onset. Geophys. Res. Lett., 40, 49004905, doi:10.1002/grl.50949.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., Wood E. F. , Luo L. , and Pan M. , 2011: A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophys. Res. Lett., 38, L13402, doi:10.1029/2011GL047792.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., Wood E. F. , Chaney N. W. , Sheffield J. , Kam J. , Liang M. , and Guan K. , 2013a: Probabilistic seasonal forecasting of African drought by dynamical models. J. Hydrometeor., 14, 17061720, doi:10.1175/JHM-D-13-054.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., Wood E. F. , Roundy J. K. , and Pan M. , 2013b: CFSv2-based seasonal hydroclimatic forecasts over the conterminous United States. J. Climate, 26, 48284847, doi:10.1175/JCLI-D-12-00683.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., Roundy J. K. , Wood E. F. , and Sheffield J. , 2015: Seasonal forecasting of global hydrologic extremes: System development and evaluation over GEWEX basins. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00003.1, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 553 292 17
PDF Downloads 441 242 10

Seasonal Soil Moisture Drought Prediction over Europe Using the North American Multi-Model Ensemble (NMME)

View More View Less
  • 1 Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
  • | 2 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
  • | 3 Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
Restricted access

Abstract

Droughts diminish crop yields and can lead to severe socioeconomic damages and humanitarian crises (e.g., famine). Hydrologic predictions of soil moisture droughts several months in advance are needed to mitigate the impact of these extreme events. In this study, the performance of a seasonal hydrologic prediction system for soil moisture drought forecasting over Europe is investigated. The prediction system is based on meteorological forecasts of the North American Multi-Model Ensemble (NMME) that are used to drive the mesoscale hydrologic model (mHM). The skill of the NMME-based forecasts is compared against those based on the ensemble streamflow prediction (ESP) approach for the hindcast period of 1983–2009. The NMME-based forecasts exhibit an equitable threat score that is, on average, 69% higher than the ESP-based ones at 6-month lead time. Among the NMME-based forecasts, the full ensemble outperforms the single best-performing model CFSv2, as well as all subensembles. Subensembles, however, could be useful for operational forecasting because they are showing only minor performance losses (less than 1%), but at substantially reduced computational costs (up to 60%). Regardless of the employed forecasting approach, there is considerable variability in the forecasting skill ranging up to 40% in space and time. High skill is observed when forecasts are mainly determined by initial hydrologic conditions. In general, the NMME-based seasonal forecasting system is well suited for a seamless drought prediction system as it outperforms ESP-based forecasts consistently over the entire study domain at all lead times.

Corresponding author address: Luis Samaniego, Helmholtz Centre for Environmental Research–UFZ, Permoserstrasse 15, 04318 Leipzig, Germany. E-mail: luis.samaniego@ufz.de

Abstract

Droughts diminish crop yields and can lead to severe socioeconomic damages and humanitarian crises (e.g., famine). Hydrologic predictions of soil moisture droughts several months in advance are needed to mitigate the impact of these extreme events. In this study, the performance of a seasonal hydrologic prediction system for soil moisture drought forecasting over Europe is investigated. The prediction system is based on meteorological forecasts of the North American Multi-Model Ensemble (NMME) that are used to drive the mesoscale hydrologic model (mHM). The skill of the NMME-based forecasts is compared against those based on the ensemble streamflow prediction (ESP) approach for the hindcast period of 1983–2009. The NMME-based forecasts exhibit an equitable threat score that is, on average, 69% higher than the ESP-based ones at 6-month lead time. Among the NMME-based forecasts, the full ensemble outperforms the single best-performing model CFSv2, as well as all subensembles. Subensembles, however, could be useful for operational forecasting because they are showing only minor performance losses (less than 1%), but at substantially reduced computational costs (up to 60%). Regardless of the employed forecasting approach, there is considerable variability in the forecasting skill ranging up to 40% in space and time. High skill is observed when forecasts are mainly determined by initial hydrologic conditions. In general, the NMME-based seasonal forecasting system is well suited for a seamless drought prediction system as it outperforms ESP-based forecasts consistently over the entire study domain at all lead times.

Corresponding author address: Luis Samaniego, Helmholtz Centre for Environmental Research–UFZ, Permoserstrasse 15, 04318 Leipzig, Germany. E-mail: luis.samaniego@ufz.de
Save