• Adam, J. C., and Lettenmaier D. P. , 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., and Lettenmaier D. P. , 2008: Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in Northern Eurasia. J. Climate, 21, 18071828, doi:10.1175/2007JCLI1535.1.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., Clark E. A. , Lettenmaier D. P. , and Wood E. F. , 2006: Correction of global precipitation products for orographic effects. J. Climate, 19, 1538, doi:10.1175/JCLI3604.1.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., Haddeland I. , Su F. , and Lettenmaier D. P. , 2007: Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei, and Ob’ rivers. J. Geophys. Res., 112, D24114, doi:10.1029/2007JD008525.

    • Search Google Scholar
    • Export Citation
  • Ahlström, A., Schurgers G. , Arneth A. , and Smith B. , 2012: Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ. Res. Lett., 7, 044008, doi:10.1088/1748-9326/7/4/044008.

    • Search Google Scholar
    • Export Citation
  • Becker, A., Finger P. , Meyer-Christoffer A. , Rudolf B. , Schamm K. , Schneider U. , and Ziese M. , 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, doi:10.5194/essd-5-71-2013.

    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., Woods R. A. , and Hrachowitz M. , 2014: A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Climate Change, 4, 583586, doi:10.1038/nclimate2246.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–658.

  • Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.

  • Charlson, R. J., Schwartz S. E. , Hales J. M. , Cess R. D. , Coakley J. A. , Hansen J. E. , and Hofmann D. J. , 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423430, doi:10.1126/science.255.5043.423.

    • Search Google Scholar
    • Export Citation
  • Clark, D. B., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701722, doi:10.5194/gmd-4-701-2011.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Qian T. , Trenberth K. E. , and Milliman J. D. , 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 27732792, doi:10.1175/2008JCLI2592.1.

    • Search Google Scholar
    • Export Citation
  • Elguindi, N., Somot S. , Déqué M. , and Ludwig W. , 2011: Climate change evolution of the hydrological balance of the Mediterranean, Black and Caspian Seas: Impact of climate model resolution. Climate Dyn., 36, 205228, doi:10.1007/s00382-009-0715-4.

    • Search Google Scholar
    • Export Citation
  • Falloon, P., Betts R. , Wiltshire A. , Dankers R. , Mathison C. , McNeall D. , Bates P. , and Trigg M. , 2011: Validation of river flows in HadGEM1 and HadCM3 with the TRIP river flow model. J. Hydrometeor., 12, 11571180, doi:10.1175/2011JHM1388.1.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., Vörösmarty C. J. , and Grabs W. , 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16, 1042, doi:10.1029/1999GB001254.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and Villarini G. , 2012: Detecting inhomogeneities in the twentieth century reanalysis over the central United States. J. Geophys. Res., 117, D05123, doi:10.1029/2011JD016988.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., and Coauthors, 2013: African tropical rainforest net carbon dioxide fluxes in the twentieth century. Philos. Trans. Roy. Soc. London, B368, 20120376, doi:10.1098/rstb.2012.0376.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., Andrews T. , Good P. , Gregory J. M. , Jackson L. S. , and Zelinka M. , 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos., 118, 11391150, doi:10.1002/jgrd.50174.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., Cox P. M. , Betts R. A. , Boucher O. , Huntingford C. , and Stott P. A. , 2006: Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439, 835838, doi:10.1038/nature04504.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., Huntingford C. , Weedon G. P. , Bellouin N. , Boucher O. , and Cox P. M. , 2014: Detection of solar dimming and brightening effects on Northern Hemisphere river flow. Nat. Geosci., 7, 796800, doi:10.1038/ngeo2263.

    • Search Google Scholar
    • Export Citation
  • Gerten, D., Rost S. , von Bloh W. , and Lucht W. , 2008: Causes of change in 20th century global river discharge. Geophys. Res. Lett., 35, L20405, doi:10.1029/2008GL035258.

    • Search Google Scholar
    • Export Citation
  • Gordon, L. J., Steffen W. , Jönsson B. F. , Folke C. , Falkenmark M. , and Johannessen Å. , 2005: Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci. USA, 102, 76127617, doi:10.1073/pnas.0500208102.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and Rankova E. Y. , 2001: Precipitation trends over the Russian permafrost-free zone: Removing the artifacts of pre-processing. Int. J. Climatol., 21, 657678, doi:10.1002/joc.627.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., Koknaeva V. V. , Belokrylova T. A. , and Karl T. R. , 1991: Overcoming biases of precipitation measurement: A history of the USSR experience. Bull. Amer. Meteor. Soc., 72, 17251733, doi:10.1175/1520-0477(1991)072<1725:OBOPMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., and Dümenil L. , 1997: A parametrization of the lateral waterflow for the global scale. Climate Dyn., 14, 1731, doi:10.1007/s003820050205.

    • Search Google Scholar
    • Export Citation
  • Harding, R. J., Weedon G. P. , van Lanen H. A. , and Clark D. B. , 2014: The future for global water assessment. J. Hydrol., 518, 186193, doi:10.1016/j.jhydrol.2014.05.014.

    • Search Google Scholar
    • Export Citation
  • Harris, I., Jones P. , Osborn T. , and Lister D. , 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hirabayashi, Y., Mahendran R. , Koirala S. , Konoshima L. , Yamazaki D. , Watanabe S. , Kim H. , and Kanae S. , 2013: Global flood risk under climate change. Nat. Climate Change, 3, 816821, doi:10.1038/nclimate1911.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2008: CO2-induced suppression of transpiration cannot explain increasing runoff. Hydrol. Processes, 22, 311314, doi:10.1002/hyp.6925.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., Frierson D. M. W. , and Kang S. M. , 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, doi:10.1002/grl.50502.

    • Search Google Scholar
    • Export Citation
  • Jung, I. W., Chang H. , and Risley J. , 2013: Effects of runoff sensitivity and catchment characteristics on regional actual evapotranspiration trends in the conterminous US. Environ. Res. Lett., 8, 044002, doi:10.1088/1748-9326/8/4/044002.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein Goldewijk, K., and Verburg P. H. , 2013: Uncertainties in global-scale reconstructions of historical land use: An illustration using the HYDE data set. Landscape Ecol., 28, 861877, doi:10.1007/s10980-013-9877-x.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Krakauer, N. Y., and Fung I. , 2008: Mapping and attribution of change in streamflow in the conterminous United States. Hydrol. Earth Syst. Sci., 12, 11111120, doi:10.5194/hess-12-1111-2008.

    • Search Google Scholar
    • Export Citation
  • Labat, D., Goddéris Y. , Probst J. L. , and Guyot J. L. , 2004: Evidence for global runoff increase related to climate warming. Adv. Water Resour., 27, 631642, doi:10.1016/j.advwatres.2004.02.020.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, doi:10.5194/acp-10-7017-2010.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., 1995: Global and terrestrial precipitation: A comparative assessment of existing climatologies. Int. J. Climatol., 15, 237258, doi:10.1002/joc.3370150302.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2014: Global carbon budget 2013. Earth Syst. Sci. Data, 6, 235263, doi:10.5194/essd-6-235-2014.

  • McCabe, G. J., and Wolock D. M. , 2002: A step increase in streamflow in the conterminous United States. Geophys. Res. Lett., 29, 2185, doi:10.1029/2002GL015999.

    • Search Google Scholar
    • Export Citation
  • McClelland, J. W., Holmes R. M. , Peterson B. J. , and Stieglitz M. , 2004: Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change. J. Geophys. Res., 109, D18102, doi:10.1029/2004JD004583.

    • Search Google Scholar
    • Export Citation
  • McMillan, H., Krueger T. , and Freer J. , 2012: Benchmarking observational uncertainties for hydrology: Rainfall, river discharge and water quality. Hydrol. Processes, 26, 40784111, doi:10.1002/hyp.9384.

    • Search Google Scholar
    • Export Citation
  • Milliman, J., Farnsworth K. , Jones P. , Xu K. , and Smith L. , 2008: Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Global Planet. Change, 62, 187194, doi:10.1016/j.gloplacha.2008.03.001.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and Dunne K. A. , 2001: Trends in evaporation and surface cooling in the Mississippi River basin. Geophys. Res. Lett., 28, 12191222, doi:10.1029/2000GL012321.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., Dunne K. A. , and Vecchia A. V. , 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350, doi:10.1038/nature04312.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., Zhang X. , Zwiers F. W. , and Hegerl G. C. , 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, doi:10.1038/nature09763.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • New, M., Hulme M. , and Jones P. , 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nilsson, C., Reidy C. A. , Dynesius M. , and Revenga C. , 2005: Fragmentation and flow regulation of the world’s large river systems. Science, 308, 405408, doi:10.1126/science.1107887.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., doi:10.5065/D6RR1W7M.

  • Oliveira, P. J. C., Davin E. L. , Levis S. , and Seneviratne S. I. , 2011: Vegetation-mediated impacts of trends in global radiation on land hydrology: A global sensitivity study. Global Change Biol., 17, 34533467, doi:10.1111/j.1365-2486.2011.02506.x.

    • Search Google Scholar
    • Export Citation
  • Osborne, J. M., and Lambert F. H. , 2014: The missing aerosol response in twentieth-century mid-latitude precipitation observations. Nat. Climate Change, 4, 374378, doi:10.1038/nclimate2173.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 1998: Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol., 18, 14931517, doi:10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T.

    • Search Google Scholar
    • Export Citation
  • Piao, S., Friedlingstein P. , Ciais P. , de Noblet-Ducoudré N. , Labat D. , and Zaehle S. , 2007: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. USA, 104, 15 24215 247, doi:10.1073/pnas.0707213104.

    • Search Google Scholar
    • Export Citation
  • Polson, D., Hegerl G. C. , Zhang X. , and Osborn T. J. , 2013: Causes of robust seasonal land precipitation changes. J. Climate, 26, 66796697, doi:10.1175/JCLI-D-12-00474.1.

    • Search Google Scholar
    • Export Citation
  • Reeves, J., Chen J. , Wang X. L. , Lund R. , and Lu Q. Q. , 2007: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteor. Climatol., 46, 900915, doi:10.1175/JAM2493.1.

    • Search Google Scholar
    • Export Citation
  • Schewe, J., and Coauthors, 2014: Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA, 111, 32453250, doi:10.1073/pnas.1222460110.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., Suarez M. J. , Pegion P. J. , Koster R. D. , and Bacmeister J. T. , 2004: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, doi:10.1126/science.1095048.

    • Search Google Scholar
    • Export Citation
  • Schwalm, C. R., and Coauthors, 2014: A model–data intercomparison of simulated runoff in the contiguous United States: Results from the North America Carbon Regional and Continental Interim-Synthesis. Biogeosci. Discuss., 11, 18011826, doi:10.5194/bgd-11-1801-2014.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., 2014: Inhomogeneous forcing and transient climate sensitivity. Nat. Climate Change, 4, 274277, doi:10.1038/nclimate2136.

    • Search Google Scholar
    • Export Citation
  • Siebert, S., Döll P. , Hoogeveen J. , Faures J.-M. , Frenken K. , and Feick S. , 2005: Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci., 9, 535547, doi:10.5194/hess-9-535-2005.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9, 161185, doi:10.1046/j.1365-2486.2003.00569.x.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2015: Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12, 653679, doi:10.5194/bg-12-653-2015.

    • Search Google Scholar
    • Export Citation
  • Smith, B., Prentice I. C. , and Sykes M. T. , 2001: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Global Ecol. Biogeogr., 10, 621637, doi:10.1046/j.1466-822X.2001.00256.x.

    • Search Google Scholar
    • Export Citation
  • Sperna Weiland, F. C., van Beek L. P. H. , Kwadijk J. C. J. , and Bierkens M. F. P. , 2012: Global patterns of change in discharge regimes for 2100. Hydrol. Earth Syst. Sci., 16, 10471062, doi:10.5194/hess-16-1047-2012.

    • Search Google Scholar
    • Export Citation
  • Sterling, S. M., Ducharne A. , and Polcher J. , 2013: The impact of global land-cover change on the terrestrial water cycle. Nat. Climate Change, 3, 385390, doi:10.1038/nclimate1690.

    • Search Google Scholar
    • Export Citation
  • Stocker, B. D., and Coauthors, 2013: Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Climate Change, 3, 666672, doi:10.1038/nclimate1864.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., Stouffer R. J. , and Meehl G. A. , 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., and Moore B. III, 1991: Modeling basin-scale hydrology in support of physical climate and global biogeochemical studies: An example using the Zambezi River. Surv. Geophys., 12, 271311, doi:10.1007/BF01903422.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., Sharma K. , Fekete B. M. , Copeland A. H. , Holden J. , Marble J. , and Lough J. A. , 1997: The storage and aging of continental runoff in large reservoir systems of the world. Ambio, 26, 210219.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., Schmoyer R. L. , Steurer P. M. , Peterson T. C. , Heim R. , Karl T. R. , and Eischeid J. K. , 1992: The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data. Environmental Sciences Division Publ. 3912, ORNL/CDIAC-53 NDP-041, Oak Ridge National Laboratory, 324 pp., doi:10.3334/CDIAC/cli.ndp041.

  • Walter, M. T., Wilks D. S. , Parlange J.-Y. , and Schneider R. L. , 2004: Increasing evapotranspiration from the conterminous United States. J. Hydrometeor., 5, 405408, doi:10.1175/1525-7541(2004)005<0405:IEFTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2012: Enlightening global dimming and brightening. Bull. Amer. Meteor. Soc., 93, 2737, doi:10.1175/BAMS-D-11-00074.1.

  • Wu, P., Christidis N. , and Stott P. , 2013: Anthropogenic impact on Earth’s hydrological cycle. Nat. Climate Change, 3, 807810, doi:10.1038/nclimate1932.

    • Search Google Scholar
    • Export Citation
  • Xu, K., Milliman J. D. , and Xu H. , 2010: Temporal trend of precipitation and runoff in major Chinese rivers since 1951. Global Planet. Change, 73, 219232, doi:10.1016/j.gloplacha.2010.07.002.

    • Search Google Scholar
    • Export Citation
  • Yang, D., Kane D. , Zhang Z. , Legates D. , and Goodison B. , 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32, L19501, doi:10.1029/2005GL024057.

    • Search Google Scholar
    • Export Citation
  • Yang, H., and Coauthors, 2015: Multi-criteria evaluation of discharge simulation in Dynamic Global Vegetation Models. J. Geophys. Res. Atmos., 120, 74887505, doi:10.1002/2015JD023129.

    • Search Google Scholar
    • Export Citation
  • Zaehle, S., and Friend A. D. , 2010: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochem. Cycles, 24, GB1005, doi:10.1029/2009GB003521.

    • Search Google Scholar
    • Export Citation
  • Zaehle, S., Friend A. D. , Friedlingstein P. , Dentener F. , Peylin P. , and Schulz M. , 2010: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance. Global Biogeochem. Cycles, 24, GB1006, doi:10.1029/2009GB003522.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Zwiers F. W. , Hegerl G. C. , Lambert F. H. , Gillett N. P. , Solomon S. , Stott P. A. , and Nozawa T. , 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461465, doi:10.1038/nature06025.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 210 95 2
PDF Downloads 63 47 0

Reconciling Precipitation with Runoff: Observed Hydrological Change in the Midlatitudes

View More View Less
  • 1 * College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
  • | 2 College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
  • | 3 Lawrence Berkeley National Laboratory, Berkeley, California
  • | 4 Department of Ecology, Montana State University, Bozeman, Montana
  • | 5 Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
  • | 6 ** Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
  • | 7 Met Office Hadley Centre, Exeter, United Kingdom
  • | 8 Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Jena, Germany
Restricted access

Abstract

Century-long observed gridded land precipitation datasets are a cornerstone of hydrometeorological research. But recent work has suggested that observed Northern Hemisphere midlatitude (NHML) land mean precipitation does not show evidence of an expected negative response to mid-twentieth-century aerosol forcing. Utilizing observed river discharges, the observed runoff is calculated and compared with observed land precipitation. The results show a near-zero twentieth-century trend in observed NHML land mean runoff, in contrast to the significant positive trend in observed NHML land mean precipitation. However, precipitation and runoff share common interannual and decadal variability. An obvious split, or breakpoint, is found in the NHML land mean runoff–precipitation relationship in the 1930s. Using runoff simulated by six land surface models (LSMs), which are driven by the observed precipitation dataset, such breakpoints are absent. These findings support previous hypotheses that inhomogeneities exist in the early-twentieth-century NHML land mean precipitation record. Adjusting the observed precipitation record according to the observed runoff record largely accounts for the departure of the observed precipitation response from that predicted given the real-world aerosol forcing estimate, more than halving the discrepancy from about 6 to around 2 W m−2. Consideration of complementary observed runoff adds support to the suggestion that NHML-wide early-twentieth-century precipitation observations are unsuitable for climate change studies. The agreement between precipitation and runoff over Europe, however, is excellent, supporting the use of whole-twentieth-century observed precipitation datasets here.

Denotes Open Access content.

Current affiliation: Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, United Kingdom.

Publisher’s Note: This article was revised on 30 November 2015 to include the CCBY reuse license, which was omitted when originally published.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Joe M. Osborne, Laver Building, University of Exeter, North Park Road, Exeter EX4 4QE, United Kingdom. E-mail: j.m.osborne@exeter.ac.uk

Abstract

Century-long observed gridded land precipitation datasets are a cornerstone of hydrometeorological research. But recent work has suggested that observed Northern Hemisphere midlatitude (NHML) land mean precipitation does not show evidence of an expected negative response to mid-twentieth-century aerosol forcing. Utilizing observed river discharges, the observed runoff is calculated and compared with observed land precipitation. The results show a near-zero twentieth-century trend in observed NHML land mean runoff, in contrast to the significant positive trend in observed NHML land mean precipitation. However, precipitation and runoff share common interannual and decadal variability. An obvious split, or breakpoint, is found in the NHML land mean runoff–precipitation relationship in the 1930s. Using runoff simulated by six land surface models (LSMs), which are driven by the observed precipitation dataset, such breakpoints are absent. These findings support previous hypotheses that inhomogeneities exist in the early-twentieth-century NHML land mean precipitation record. Adjusting the observed precipitation record according to the observed runoff record largely accounts for the departure of the observed precipitation response from that predicted given the real-world aerosol forcing estimate, more than halving the discrepancy from about 6 to around 2 W m−2. Consideration of complementary observed runoff adds support to the suggestion that NHML-wide early-twentieth-century precipitation observations are unsuitable for climate change studies. The agreement between precipitation and runoff over Europe, however, is excellent, supporting the use of whole-twentieth-century observed precipitation datasets here.

Denotes Open Access content.

Current affiliation: Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, United Kingdom.

Publisher’s Note: This article was revised on 30 November 2015 to include the CCBY reuse license, which was omitted when originally published.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Joe M. Osborne, Laver Building, University of Exeter, North Park Road, Exeter EX4 4QE, United Kingdom. E-mail: j.m.osborne@exeter.ac.uk
Save