A Bayesian Hidden Markov Model of Daily Precipitation over South and East Asia

Tracy Holsclaw University of California, Irvine, Irvine, California

Search for other papers by Tracy Holsclaw in
Current site
Google Scholar
PubMed
Close
,
Arthur M. Greene International Research Institute for Climate and Society, Earth Institute at Columbia University, Palisades, New York

Search for other papers by Arthur M. Greene in
Current site
Google Scholar
PubMed
Close
,
Andrew W. Robertson International Research Institute for Climate and Society, Earth Institute at Columbia University, Palisades, New York

Search for other papers by Andrew W. Robertson in
Current site
Google Scholar
PubMed
Close
, and
Padhraic Smyth University of California, Irvine, Irvine, California

Search for other papers by Padhraic Smyth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A Bayesian hidden Markov model (HMM) for climate downscaling of multisite daily precipitation is presented. A generalized linear model (GLM) component allows exogenous variables to directly influence the distributional characteristics of precipitation at each site over time, while the Markovian transitions between discrete states represent seasonality and subseasonal weather variability. Model performance is evaluated for station networks of summer rainfall over the Punjab region in northern India and Pakistan and the upper Yangtze River basin in south-central China. The model captures seasonality and the marginal daily distributions well in both regions. Extremes are reproduced relatively well in the Punjab region, but underestimated for the Yangtze. In terms of interannual variability, the combined GLM–HMM with spatiotemporal averages of observed rainfall as a predictor is shown to exhibit skill (in terms of reduced RMSE) at the station level, particularly for the Punjab region. The skill is largest for dry-day counts, moderate for seasonal rainfall totals, and very small for the number of extreme wet days.

Corresponding author address: Andrew Robertson, IRI, Earth Institute at Columbia University, 230 Monell, 61 Route 9W, P.O. Box 1000, Palisades, NY 10964-8000. E-mail: awr@iri.columbia.edu

Abstract

A Bayesian hidden Markov model (HMM) for climate downscaling of multisite daily precipitation is presented. A generalized linear model (GLM) component allows exogenous variables to directly influence the distributional characteristics of precipitation at each site over time, while the Markovian transitions between discrete states represent seasonality and subseasonal weather variability. Model performance is evaluated for station networks of summer rainfall over the Punjab region in northern India and Pakistan and the upper Yangtze River basin in south-central China. The model captures seasonality and the marginal daily distributions well in both regions. Extremes are reproduced relatively well in the Punjab region, but underestimated for the Yangtze. In terms of interannual variability, the combined GLM–HMM with spatiotemporal averages of observed rainfall as a predictor is shown to exhibit skill (in terms of reduced RMSE) at the station level, particularly for the Punjab region. The skill is largest for dry-day counts, moderate for seasonal rainfall totals, and very small for the number of extreme wet days.

Corresponding author address: Andrew Robertson, IRI, Earth Institute at Columbia University, 230 Monell, 61 Route 9W, P.O. Box 1000, Palisades, NY 10964-8000. E-mail: awr@iri.columbia.edu
Save
  • Albert, J. H., and Chib S. , 1993: Bayesian analysis of binary and polychotomous response data. J. Amer. Stat. Assoc., 88, 669679, doi:10.1080/01621459.1993.10476321.

    • Search Google Scholar
    • Export Citation
  • Ambrosino, C., Chandler R. E. , and Todd M. C. , 2014: Rainfall-derived growing season characteristics for agricultural impact assessments in South Africa. Theor. Appl. Climatol., 115, 411426, doi:10.1007/s00704-013-0896-y.

    • Search Google Scholar
    • Export Citation
  • Bellone, E., Hughes J. P. , and Guttorp P. , 2000: A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Climate Res., 15, 112, doi:10.3354/cr015001.

    • Search Google Scholar
    • Export Citation
  • Charles, S. P., Bates B. C. , and Hughes J. P. , 1999: A spatiotemporal model for downscaling precipitation occurrence and amounts. J. Geophys. Res., 104, 31 65731 669, doi:10.1029/1999JD900119.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and Shukla J. , 1981: Monsoon dynamics. Predictability of Monsoons, J. Lighthill and R. Pearce, Eds., Cambridge University Press, 99–109.

  • Cox, D. R., 1971: The Analysis of Binary Data. Methuen, 142 pp.

  • DelSole, T., and Feng X. , 2013: The “Shukla–Gutzler” method for estimating potential seasonal predictability. Mon. Wea. Rev., 141, 822831, doi:10.1175/MWR-D-12-00007.1.

    • Search Google Scholar
    • Export Citation
  • Forney, G. D., Jr., 1973: The Viterbi algorithm. Proc. IEEE, 61, 268278, doi:10.1109/PROC.1973.9030.

  • Furrer, E., and Katz R. , 2007: Generalized linear modeling approach to stochastic weather generators. Climate Res., 34, 129144, doi:10.3354/cr034129.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Childress S. , 1987: Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics. Springer-Verlag, 512 pp.

  • Greene, A. M., Robertson A. W. , and Kirshner S. , 2008: Analysis of Indian monsoon daily rainfall on subseasonal to multidecadal time-scales using a hidden Markov model. Quart. J. Roy. Meteor. Soc., 134, 875887, doi:10.1002/qj.254.

    • Search Google Scholar
    • Export Citation
  • Greene, A. M., Robertson A. W. , Smyth P. , and Triglia S. , 2011: Downscaling projections of the Indian monsoon rainfall using a non-homogeneous hidden Markov model. Quart. J. Roy. Meteor. Soc., 137B, 347–359, doi:10.1002/qj.788.

  • Hansen, J. W., Challinor A. , Ines A. , Wheeler T. , and Moron V. , 2006: Translating climate forecasts into agricultural terms: Advances and challenges. Climate Res., 33, 2741, doi:10.3354/cr033027.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., McCabe G. J. Jr., Wolock D. M. , and Ayers M. A. , 1991: Simulation of precipitation by weather type analysis. Water Resour. Res., 27, 493501, doi:10.1029/90WR02650.

    • Search Google Scholar
    • Export Citation
  • Hughes, J. P., and Guttorp P. , 1994a: A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resour. Res., 30, 15351546, doi:10.1029/93WR02983.

    • Search Google Scholar
    • Export Citation
  • Hughes, J. P., and Guttorp P. , 1994b: Incorporating spatial dependence and atmospheric data in a model of precipitation. J. Appl. Meteor., 33, 15031515, doi:10.1175/1520-0450(1994)033<1503:ISDAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hughes, J. P., Guttorp P. , and Charles S. P. , 1999: A non-homogeneous hidden Markov model for precipitation occurrence. J. Roy. Stat. Soc., 48C, 1530, doi:10.1111/1467-9876.00136.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., van Beek L. P. H. , and Bierkens M. F. P. , 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, doi:10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • Johnson, G., Hanson C. , Hardegree S. , and Ballard E. , 1996: Stochastic weather simulation: Overview and analysis of two commonly used models. J. Appl. Meteor., 35, 18781896, doi:10.1175/1520-0450(1996)035<1878:SWSOAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joshi, V., and Rajeevan M. , 2006: Trend in precipitation extremes over India. NCC Research Rep. 3/2006, 25 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katz, R., and Glantz M. , 1986: Anatomy of a rainfall index. Mon. Wea. Rev., 114, 764771, doi:10.1175/1520-0493(1986)114<0764:AOARI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kenabatho, P. K., McIntyre N. R. , Chandler R. E. , and Wheater H. S. , 2012: Stochastic simulation of rainfall in the semi-arid Limpopo basin, Botswana. Int. J. Climatol., 32, 11131127, doi:10.1002/joc.2323.

    • Search Google Scholar
    • Export Citation
  • Kirshner, S., Smyth P. , and Robertson A. W. , 2004: Conditional Chow–Liu tree structures for modeling discrete-valued vector time series. Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, AUAI Press, 317324.

  • McCullagh, P., and Nelder J. , 1989: Generalized Linear Models. Chapman and Hall, 532 pp.

  • Moron, V., Robertson A. W. , Ward M. N. , and Camberlin P. , 2007: Spatial coherence of tropical rainfall at the regional scale. J. Climate, 20, 52445263, doi:10.1175/2007JCLI1623.1.

    • Search Google Scholar
    • Export Citation
  • CPC/NCEP, 1987: CPC global summary of day/month observations, 1979-continuing. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 20 May 2014. [Available online at http://rda.ucar.edu/datasets/ds512.0.]

  • Paap, R., and Frances P. H. , 2000: A dynamic multinomial probit model for brand choice with different long-run and short-run effects of marketing-mix variables. J. Appl. Econ., 15, 717744, doi:10.1002/jae.580.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1998: Nonlinear dynamics and climate change: Rossby’s legacy. Bull. Amer. Meteor. Soc., 79, 14111423, doi:10.1175/1520-0477(1998)079<1411:NDACCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., Kirshner S. , and Smyth P. , 2004: Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. J. Climate, 17, 44074424, doi:10.1175/JCLI-3216.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., Kirshner S. , Smyth P. , Charles S. P. , and Bates B. C. , 2006: Subseasonal-to-interdecadal variability of the Australian monsoon over North Queensland. Quart. J. Roy. Meteor. Soc., 132, 519542, doi:10.1256/qj.05.75.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., Moron V. , and Swarinoto Y. , 2009: Seasonal predictability of daily rainfall statistics over Indramayu district, Indonesia. Int. J. Climatol., 29, 14491462, doi:10.1002/joc.1816.

    • Search Google Scholar
    • Export Citation
  • Schwarz, G., 1978: Estimating the dimension of a model. Ann. Stat., 6, 461464, doi:10.1214/aos/1176344136.

  • Scott, S., 2002: Bayesian methods for hidden Markov models: Recursive computing in the 21st century. J. Amer. Stat. Assoc., 97, 337351, doi:10.1198/016214502753479464.

    • Search Google Scholar
    • Export Citation
  • Shirley, K. E., Small D. S. , Lynch K. G. , Maisto S. A. , and Oslin D. W. , 2010: Hidden Markov models for alcoholism treatment trial data. Ann. Appl. Stat., 4, 366395, doi:10.1214/09-AOAS282.

    • Search Google Scholar
    • Export Citation
  • Spiegelhalter, D. J., Best N. G. , Carlin B. P. , and van der Linde A. , 2002: Bayesian measures of model complexity and fit. J. Roy. Stat. Soc., 64B, 583639, doi:10.1111/1467-9868.00353.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., Hope P. , and Charles S. , 2008: Evaluating the consistency between statistically downscaled and global dynamical model climate change projections. J. Climate, 21, 60526059, doi:10.1175/2008JCLI2379.1.

    • Search Google Scholar
    • Export Citation
  • Vrac, M., and Naveau P. , 2007: Stochastic downscaling of precipitation: From dry events to heavy rainfalls. Water Resour. Res., 43, W07402, doi:10.1029/2006WR005308; Corrigendum, 44, W05702, doi:10.1029/2008WR007083.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 1999a: Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric. For. Meteor., 93, 153170, doi:10.1016/S0168-1923(98)00125-7.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 1999b: Multisite downscaling of daily precipitation with a stochastic weather generator. Climate Res., 11, 125136, doi:10.3354/cr011125.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1219 347 39
PDF Downloads 1010 252 28